Использование смесей дизельного топлива и метилового эфира подсолнечного масла в качестве топлива для транспортных дизелей

В.А. Марков¹, С.Н. Девянин², С.А. Нагорнов³, С.С. Лобода¹

 1 МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 2 МГАУ им. В.П. Горячкина, Москва, 105005, Россия 3 ГНУ ВНИИТиН Россельхозакадемии, Тамбов, 392022, Россия

Показаны преимущества использования в дизелях биотоплив, производимых на основе растительных масел. Приведены результаты экспериментальных исследований дизеля типа Д-245.12С малотоннажного автомобиля ЗИЛ-5301 «Бычок», работающего на смесях дизельного топлива и метилового эфира подсолнечного масла. Подтверждена возможность значительного улучшения показателей токсичности отработавших газов исследуемого дизеля при его работе на смесевом биотопливе.

Ключевые слова: дизельный двигатель, дизельное топливо, подсолнечное масло, метиловый эфир подсолнечного масла, смесевое биотопливо, токсичность отработавших газов.

Сокращение запасов нефтяных месторождений, повышение цен на нефть и нефтепродукты, острые экологические проблемы мегаполисов приводят к необходимости поиска альтернативы нефтяным топливам. При этом наиболее перспективны моторные топлива, производимые из возобновляемых сырьевых ресурсов, в первую очередь из сырья растительного происхождения [1, 2]. Эта сырьевая база является практически неисчерпаемой.

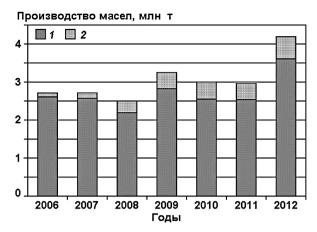
В качестве моторного топлива для дизельных двигателей все более широкое применение находят топлива, получаемые из растительных масел [3, 4]. Для централизованного снабжения мегаполисов моторными топливами в наибольшей степени подходят сложные эфиры таких масел (их называют также биодизельным топливом) — они имеют физико-химические свойства, достаточно близкие к свойствам нефтяных дизельных топлив (ДТ). Кроме того, эти эфиры хорошо смешиваются с нефтепродуктами, что позволяет получать стойкие смеси, отличающиеся к тому же хорошими экологическими характеристиками.

Основой производства сложных эфиров растительных масел являются реакции этерификации, представляющие собой процесс взаимодействия жирных кислот растительных масел со спиртами. В об-

щем случае получение эфиров из кислот может быть выражено уравнением химической реакции этерификации, представленным на рис. 1 [5]. При протекании этой реакции отделившийся от спирта атом водорода Н соединяется с гидроксильной группой ОН кислоты с образованием воды, а при взаимодействии оставшихся радикалов кислоты и спирта образуется эфир.

$$R_1 - C$$
 $+ H_1O - R_2$ $\rightarrow R_1 - C$ $+ H_2O$ $O - R_2$ Кислота Спирт Эфир Вода

Рис. 1. Реакция кислоты со спиртом с образованием эфира


При этерификации жирных кислот растительных масел могут быть использованы различные спирты: метанол, этанол, пропанол, бутанол. Однако наименьшая цена моторного топлива достигается при взаимодействии жирных кислот растительных масел с метанолом.

В странах Евросоюза биодизельное топливо производится из различных растительных масел: около 84 % приходится на долю метилового эфира рапсового масла, примерно 13 % составляет метиловый эфир подсолнечного масла, по 1 % — сложные эфиры, производимые из соевого масла, пальмового масла и остальных масел [3]. В Российской Федерации представляется весьма привлекательным производство биодизельного топлива из подсолнечного масла. В 2007 г. в России произведено около 2,7 млн т растительных масел, из них на долю подсолнечного масла приходилось более 90 %. В 2012 г. производство растительных масел составило приблизительно 4,2 млн т, а подсолнечного масла — около 3,6 млн т (рис. 2). Ниже приведена доля различных растительных масел в общем объеме их производства в России в 2012 г., %:

Подсолнечное86,84	Горчичное0,11
Соевое7,96	Кукурузное 0,04
Рапсовое4.84	Льняное0.03

На долю прочих масел, к которым относятся арахисовое, оливковое, сафлоровое, хлопковое, сурепное и иные, приходится 0,18 %.

В 2008 г. посевные площади под подсолнечником в России достигли 6,17 млн га, а валовый сбор маслосемян составил 7,22 млн т. При этом общемировая посевная площадь подсолнечника равна около 14 млн га. Подсолнечное масло вызывает дополнительный интерес еще и потому, что производство биодизельного топлива может быть организовано из отработанного фритюрного подсолнечного масла, используемого в пищевой промышленности и системе общественного питания.

Рис. 2. Динамика изменения объемов производства растительных масел в России:

1 — подсолнечное масло; 2 — прочие растительные масла

При сельскохозяйственном производстве с 1 га посевных площадей получают около 1 000 литров подсолнечного масла (около 920 кг). При производстве биодизельного топлива в результате реакции этерификации подсолнечного масла метанолом получают смесь, которой дают отстояться. Легкие верхние фракции продукта и являются метиловым эфиром подсолнечного масла (МЭПМ), или биодизельным топливом. Нижние фракции являются глицериновой фазой (глицерином с примесями). Из 1 000 кг подсолнечного масла и 150 кг метанола получают около 1 т МЭПМ и около 200 кг глицерина. Выделение высоковязкого глицерина из растительного масла позволяет значительно снизить его исходно высокую вязкость и приблизить ее к вязкости нефтяного ДТ.

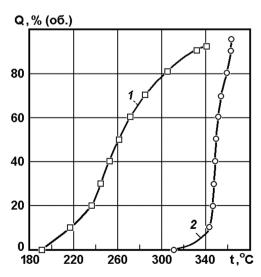
Характерной особенностью биодизельных топлив, производимых из растительных масел, является присутствие в их молекулах атомов кислорода — 10...12 % (масс.); отметим, что в молекулах нефтяного дизельного топлива — 0,4 %. При сгорании биодизельного топлива наличие этого кислорода благоприятно сказывается на процессе сгорания и позволяет уменьшить выбросы с отработавшими газами (ОГ) продуктов неполного сгорания топлива. Практическое отсутствие в МЭПМ серы снижает выбросы в атмосферу оксидов серы (соединяясь с парами воды в атмосфере Земли они способствуют возникновению кислотных дождей). Поскольку в МЭПМ ароматические углеводороды отсутствуют полициклические И (ПАУ), в ОГ дизелей, работающих на этом топливе, отмечено существенно меньшее содержание канцерогенных веществ (бенз(а)пирен и другие ПАУ).

Одно из основных преимуществ использования биотоплив заключается в возможности сокращения выбросов в атмосферу основного

парникового газа — диоксида углерода. Это обусловлено тем, что при их сгорании, в частности при сгорании МЭПМ, выделяется примерно такое же количество СО₂, которое было потреблено из атмосферы растением, являющимся исходным сырьем для производства подсолнечного масла, за весь период его жизни. При попадании в почву и в воду МЭПМ не причиняет вреда растениям и животным. Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за 1 мес. перерабатывают 99 % эфира, что позволяет говорить о минимизации загрязнения рек и озер.

Структурные формулы жирных кислот растительных масел и углеводородов ДТ подобны, поэтому все растительные масла являются горючими и могут применяться в качестве моторных топлив. Низкая испаряемость и высокая вязкость растительных масел исключают их использование в бензиновых двигателях, но их можно успешно применять в качестве топлива для дизельных двигателей. Этому способствуют сравнительно невысокая термическая стабильность растительных масел и приемлемая температура их самовоспламенения ($t_{\rm CB} = 280...320$ °C), лишь немного превышающая температуру самовоспламенения дизельных топлив ($t_{\rm CB} = 230...300$ °C). При этом цетановое число различных растительных масел изменяется от 33 до 50 (табл. 1), что сопоставимо с аналогичным показателем дизельных топлив (от 40 до 55) [3].

Таблица 1 Физико-химические свойства растительных масел


Φ				Масло			
Физико-химическое свойство	рапсо-	подсол- нечное	соевое	паль- мовое	олив- ковое	хлоп- ковое	арахи- совое
Плотность при $t = 20$ °C, кг/м ³	916	923	924	918	914	919	917
Кинематическая вяз- кость, мм²/с, при t, °C: 20 40 100	75,0 36,0 8,1	65,2 30,7 7,4	- 32,0 7,7	- - 8,6	- - 8,4	- - 7,7	81,5 36,5 8,3
Цетановое число	36	33	50	49	_	_	37
Количество воздуха, необходимое для сгорания 1 кг вещества, кг	12,6	11,1	_	_	_	_	11,2
Теплота сгорания низшая, МДж/кг	37,3	37,0	36–39	37,1	_	_	37,0
Температура самовос- пламенения, °С	318	320	318	315	285	316	_

Окончание табл. 1

			Масло			
рапсо-	подсол- нечное	соевое	паль-	олив- ковое	хлоп- ковое	арахи- совое
-20	-16	-12	+30	-12	-18	-
0,002	ı	_	-	_	_	-
78,0 10,0 12,0	77,6 11,5 10,9	77,5 11,5 11,0	77,6 12,0 11,4	1 1 1	77,1 11,7 11,2	78,0 12,3 9,7
4,66	2,14	0,03	0,17	5,90	0,23	-
0,40	0,51	0,44	_	0,20	0,23	_
	вое -20 0,002 78,0 10,0 12,0 4,66	вое нечное -20 -16 0,002 - 78,0 77,6 10,0 11,5 12,0 10,9 4,66 2,14	рапсовое подсолнечное соевое -20 -16 -12 0,002 - - 78,0 77,6 77,5 10,0 11,5 11,5 12,0 10,9 11,0 4,66 2,14 0,03	вое нечное соевое мовое -20 -16 -12 +30 0,002 - - - 78,0 77,6 77,5 77,6 10,0 11,5 11,5 12,0 12,0 10,9 11,0 11,4 4,66 2,14 0,03 0,17	рапсовое вое вое вое вое вое вое вое вое вое	рапсовое вое вое вое вое вое вое вое вое вое

Примечание. Прочерк означает, что свойства не определялись.

Отличительной особенностью МЭПМ является то, что в его состав входят более тяжелые фракции, о чем свидетельствуют представленные на рис. 3 кривые фракционной разгонки этого эфира и базового ДТ [6]. Исследуемое в работе [6] базовое ДТ выкипает в пределах от 190 до 340 °C, а МЭПМ имеет диапазон температур пе-

Рис. 3. Зависимость количества испарившегося топлива от температуры разгонки:

1 — базовое ДТ; *2* — МЭПМ

регонки от 310 до 360 °C. Поэтому МЭПМ отличается от ДТ заметно большими плотностью и вязкостью. Указанные отличия физических свойств МЭПМ, а также его смесей с ДТ от свойств стандартного ДТ влияют на параметры процесса топливоподачи и, следовательно, на показатели топливной экономичности и токсичности ОГ дизеля, работающего на указанных топливах.

Известен ряд работ, посвященных исследованию дизелей, работающих на МЭПМ и его смесях с ДТ [6–8]. В работе [9] приведены результаты испытаний дизеля типа Д-245.12С (4ЧН 11/12,5) на нефтяном ДТ и на смеси 95 % ДТ и 5 % МЭПМ. Вместе с тем вопрос о применении смесей МЭПМ и ДТ в качестве топлива для отечественных транспортных дизелей недостаточно изучен. Для подтверждения возможности использования этих смесей в качестве моторного топлива проведены экспериментальные исследования дизеля Д-245.12С Минского моторного завода, устанавливаемого на малотоннажные грузовые автомобили ЗИЛ-5301 «Бычок». Приведем некоторые параметры этого дизеля:

Тип двигателя
Число цилиндров4
Диаметр цилиндра, мм110
Ход поршня, мм
Рабочий объем цилиндра, л
Общий рабочий объем, л
Степень сжатия16
Система турбонаддуваТурбокомпрессор ТКР-6 производства
OAO «Борисовский завод
автоагрегатов» (Беларусь)
Тип камеры сгорания Камера сгорания типа ЦНИДИ
Способ смесеобразования Объемно-пленочное смесеобразование
Система питания Разделенного типа
Топливный насос высокого
давления (ТНВД)Рядный типа PP4M10U1f фирмы
Motorpal (Чехия) со всережимным
центробежным регулятором
Диаметр плунжеров ТНВД, мм10
Ход плунжеров ТНВД, мм10
Длина нагнетательных
топливопроводов, мм540
ФорсункиТипа ФДМ-22 производства АО «Ку-
роаппаратура» (г. Вильнюс, Литва)
Распылители форсунокТипа DOP 119S534 фирмы Motorpal
с пятью сопловыми отверстиями
диаметром 0,34 мм и проходным
сечением 0,25 мм ²
Давление начала впрыс-
кивания форсунок, МПа21,5

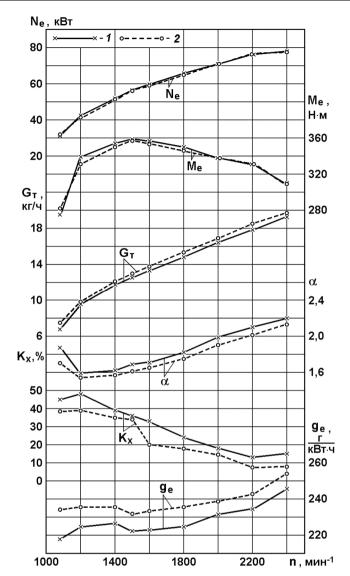
Дизель исследован на моторном стенде АМО «ЗИЛ» на режимах внешней скоростной характеристики и режимах 13-ступенчатого испытательного цикла Правил ЕЭК ООН № 49 с установочным УОВТ $\theta = 13^{\circ}$ поворота коленчатого вала до верхней мертвой точки (ВМТ) и неизменным положением упора дозирующей рейки (упора максимальной подачи топлива). Моторный стенд был оборудован комплектом измерительной аппаратуры. Дымность ОГ измеряли с помощью ручного дымомера МК-3 фирмы Hartridge (Великобритания) с погрешностью измерения ± 1 %. Концентрации NO_x, CO, CH_x в ОГ определяли газоанализатором SAE-7532 фирмы Yanaco (Япония) с погрешностью измерения ± 1 %.

Исследовали товарное ДТ и его смеси с МЭПМ с содержанием от 5 до 40 % эфира, произведенного во Всероссийском научно-исследовательском институте использования техники и нефтепродуктов Россельхозакадемии (ГНУ ВНИИТиН, г. Тамбов). Некоторые физикохимические свойства дизельного топлива, МЭПМ и указанных смесей представлены в табл. 2.

На первом этапе исследований проведены испытания дизеля Д-245.12C на чистом ДТ и на смеси 80 % ДТ с 20 % МЭПМ на режимах внешней скоростной характеристики (рис. 4). Смесь ДТ и МЭПМ имеет физические свойства, приближающиеся к свойствам ДТ, но ее плотность и вязкость несколько выше аналогичных показателей ДТ (см. табл. 2). Поэтому при переходе от ДТ к смесевому биотопливу отмечено небольшое увеличение часового расхода топлива $G_{\scriptscriptstyle {\rm T}}$ (см. рис. 4 и табл. 3). Однако крутящий момент двигателя и его эффективная мощность изменились незначительно (см. рис. 4 и табл. 3). В то же время из-за наличия в молекулах МЭПМ атомов кислорода теплотворная способность смесевого биотоплива несколько ниже теплотворной способности ДТ. Это привело к тому, что при переходе от ДТ на смесь 80 % ДТ и 20 % МЭПМ на режиме максимальной мощности с частотой вращения коленчатого вала $n = 2\,400$ мин⁻¹ удельный эффективный расход топлива g_e увеличился от 246,6 до 254,0 г/(кВт·ч), на режиме максимального крутящего момента при $n=1\,500\,\mathrm{mm}^{-1}$ — от 221,1 до 231,8 г/(кВт·ч). При этом изменения эффективного КПД дизеля η_e на этих режимах не превышали 1,6 % (см. табл. 3).

Физико-химические свойства исследуемых топлив

				Топливо	иво		
Физико-химическое свойство	ДТ	МПЄМ	+ ТД % 26 + 5 % МЭПМ	90 % ДТ + + 10 % МЭПМ	90 % ДТ + 85 % ДТ + 10 % МЭПМ + 15 % МЭПМ	80 % ДТ + + 20 % МЭПМ	+ TL % 09 + 40 % MJIM
Плотность при 20 °C, кг/м ³	830	988	832,8	835,6	838,4	841,2	852,4
Кинематическая вязкость при 20 °C, $^{\rm MM}^2$ /с	3,8	7,0	4,0	4,2	4,3	4,4	5,0
Теплота сгорания низшая, МДж/кг	42,5	37,2	42,2	41,9	41,7	41,4	40,4
Цетановое число	45	47	I	I	I	I	I
Температура помутнения, °C	-25	-13	I	I	I	I	I
Температура застывания, °С	-35	-17	I	I	I	I	I
Количество воздуха, необходимое для сгорания 1 кг вещества, кг	14,30	12,53	14,23	14,11	14,03	13,96	13,59
Сопержание % (масс.).							
C CACTO	87,0	76.7	86.5	0.98	85.5	85.0	82,9
Н	12,6	12,2	12,6	12,5	12,5	12,5	12,4
0	0,4	11,1	6,0	1,5	2,0	2,5	4,7
Общее содержание серы, % (масс.)	0,20	0,002	0,19	0,18	0,17	0,16	0,12
Коксуемость 10%-ного остатка, % (масс.), не более	0,20	0,30	0,21	0,21	0,22	0,22	0,24
Примечания: 1. Прочерк означает, что свойства не определялись.	et, 4To ci	войства не	определялись.				


2. Для смесей указано объемное содержание компонентов.

Показатели дизеля Д-245.12С, работающего на исследуемых топливах

			Tc	Топливо		
Показатель лизеля		95 % JJT +	+ TL % 06	85 % ДТ +	+ TL % 08	+ ДД % 09
	ДТ	+ 5 %	+ 10 %	+ 15 %	+ 20 %	+ 40 %
		МЭПМ	МЭПМ	МЭПМ	МЭПМ	МЭПМ
Часовой расход топлива $G_{ m r}$, кг/ч	19,23	19,20	19,49	19,47	19,71	20,07
	12,51	12,54	12,81	12,85	12,98	13,14
Крутящий момент дизеля M_e , Н·м	310	306	313	307	309	311
	359	356	355	353	357	357
V дельный эффективный расход топлива g_e	246,6	249,8	247,8	252,6	254,0	257,0
г/(кВт·ч)	222,1	224,4	229,7	231,8	231,8	234,5
Эффективный КПД дизеля η _е	0,343	0,342	0,347	0,342	0,342	0,347
	0,381	0,380	0,374	0,372	0,375	0,380
Дымность ОГ K_x , % по шкале Хартриджа	15,0	13,0	10,0	10,0	8,0	6,0
	36,0	37,0	36,0	35,0	34,0	25,0
V словный эффективный расход топлива $g_{e m ycn},$	241,32	250,40	251,31	252,75	255,07	258,49
$\Gamma/(\kappa B r \cdot 4)$						
V словный эффективный КПД дизеля, $\eta_{e ext{ycn}}$	0,351	0,341	0,342	0,342	0,341	0,345
Удельный выброс оксидов азота e_{NOx} , г/(кВт·ч)	5,948	5,905	5,894	5,724	5,718	5,742
V дельный выброс монооксида углерода $e_{\rm CO}$,	2,782	2,767	2,428	2,288	2,171	1,949
г/(кВг·ч)						
V дельный выброс углеводородов, $e_{\text{СНх}}$, г/(к B г·ч)	1,006	0,924	0,829	0,821	0,813	0,784
Примечания: 1. В числителе — на режиме максимальной мощности, в знаменателе — на режиме максимального крутящего мо-	ксимально	й мощности, в	знаменателе —	– на режиме ма	аксимального н	крутящего мо-

2. Значения $g_{e \text{ усл}}$, $\eta_{e \text{ усл}}$, $e_{\text{СО}}$, $e_{\text{ССНx}}$ — результаты интегральной оценки работы дизеля на режимах 13-ступенчатого цикла.

мента.

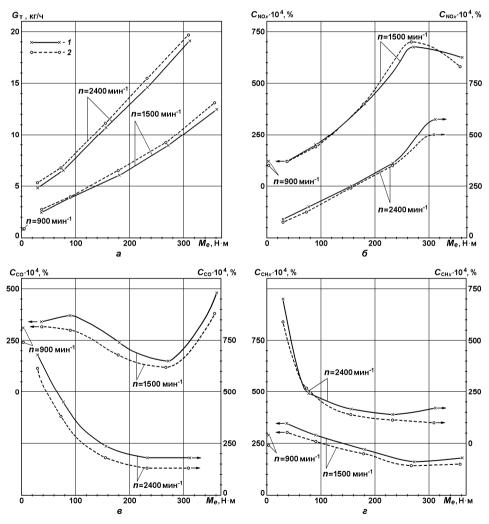


Рис. 4. Зависимости эффективной мощности N_e , крутящего момента M_e , часового расхода топлива $G_{\rm T}$, коэффициента избытка воздуха α , дымности ОГ K_x и удельного эффективного расхода топлива g_e от частоты вращения n коленчатого вала дизеля Д-245.12С на режимах внешней скоростной характеристики при использовании различных топлив:

1 — ДТ; 2 — смесь 80 % ДТ + 20 % МЭПМ

Вместе с тем наличие в молекулах МЭПМ атомов кислорода привело к заметному уменьшению дымности ОГ при работе дизеля Д-245.12С на указанной смеси. Так, на режиме максимальной мощности при $n=2\,400\,$ мин $^{-1}$ переход с ДТ на смесь $80\,$ % ДТ и $20\,$ % МЭПМ сопровождался снижением дымности ОГ K_x с 15 до $8\,$ % по шкале Хартриджа, а на режиме максимального крутящего момента при $n=1\,500\,$ мин $^{-1}$ — с $36\,$ до $34\,$ % по шкале Хартриджа.

Результаты экспериментальных исследований Д-245.12С на чистом дизельном топливе и на смеси 80 % ДТ и 20 % МЭПМ на режимах 13-ступенчатого испытательного цикла Правил ЕЭК ООН № 49 представлены на рис. 5. Как отмечено выше, использование рассматриваемого смесевого биотоплива привело к некоторому увеличению часового расхода топлива $G_{\rm T}$ (см. рис. 4 и табл. 3). Так, при переводе дизеля с ДТ на смесь 80 % ДТ и 20 % МЭПМ на режиме максимальной мощности при n=2400 мин⁻¹ расход топлива $G_{\rm T}$ возрос от 19,23 до 19,71 кг/ч, а на режиме максимального крутящего момента при n=1500 мин⁻¹ — от 12,51 до 12,98 кг/ч (см. рис. 5, a и табл. 3).

Рис. 5. Зависимость часового расхода топлива $G_{\rm T}$ (a), объемных концентраций в ОГ оксидов азота $C_{\rm NOx}$ (δ), монооксида углерода $C_{\rm CO}$ (ϵ) и несгоревших углеводородов $C_{\rm CHx}$ (ϵ) от крутящего момента M_e и частоты вращения n дизеля Д-245.12C при использовании различных топлив:

1 - ДТ; 2 - смесь 80 % ДТ + 20 % МЭПМ

Переход от нефтяного ДТ к исследуемому смесевому биотопливу сопровождался изменением концентрации в ОГ оксидов азота $C_{\rm NOx}$ (см. рис. 5, δ), причем на большинстве исследованных режимов отмечено снижение содержания оксидов азота в ОГ. Так, перевод дизеля с ДТ на смесь 80 % ДТ и 20 % МЭПМ на режиме холостого хода при n=900 мин $^{-1}$ сопровождался уменьшением концентрации $C_{\rm NOx}$ от 0,0120 до 0,0100 %, на режиме максимального крутящего момента при $n=1\,500$ мин $^{-1}$ — от 0,0625 до 0,0580 %, на режиме максимальной мощности при $n=2\,400$ мин $^{-1}$ — от 0,0575 до 0,0500 %. При использовании рассматриваемого смесевого биотоплива отмечено значительное снижение концентрации в ОГ монооксида углерода $C_{\rm CO}$ (см. рис. 5, θ). Перевод дизеля с ДТ на смесь 80 % ДТ и 20 % МЭПМ на режиме холостого хода при n=900 мин $^{-1}$ сопровождался снижением значения $C_{\rm CO}$ от 0,0310 до 0,0240 %, на режиме максимального крутящего момента при $n=1\,500$ мин $^{-1}$ — от 0,0480 до 0,0380 %, а на режиме максимальной мощности при $n=2\,400$ мин $^{-1}$ — от 0,0180 до 0,0130 %.

Использование смесевого биотоплива позволило заметно снизить и концентрацию в ОГ несгоревших углеводородов $C_{\rm CHx}$ (см. рис. 5, ε). При переводе дизеля с ДТ на смесь 80 % ДТ и 20 % МЭПМ на режиме холостого хода при n=900 мин $^{-1}$ отмечено снижение значения $C_{\rm CHx}$ от 0,0290 до 0,0240 %, на режиме максимального крутящего момента при n=1500 мин $^{-1}$ — от 0,0180 до 0,0150 %, на режиме максимальной мощности при n=2400 мин $^{-1}$ — от 0,0170 до 0,0100 %.

По приведенным на рис. 5, δ — ϵ характеристикам содержания в ОГ нормируемых токсичных компонентов (оксидов азота NO_x , монооксида углерода СО, несгоревших углеводородов CH_x) с использованием общепринятых методик рассчитаны их интегральные удельные массовые выбросы на режимах 13-ступенчатого цикла (соответственно e_{NOx} , e_{CO} , e_{CHx}). Оценка эксплуатационного расхода топлива на режимах 13-ступенчатого цикла проведена по среднему (условному) удельному эффективному расходу топлива, который определялся с использованием зависимости [3]

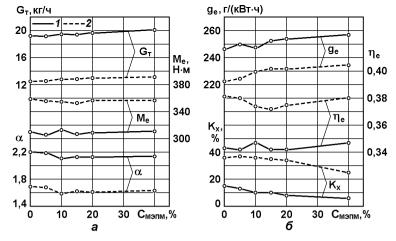
$$g_{e \text{ ycn}} = \frac{\sum_{i=1}^{13} G_{\text{T}i} K_i}{\sum_{i=1}^{13} N_{ei} K_i},$$

где $G_{\text{т}i}$, N_{ei} — часовой расход топлива и эффективная мощность двигателя на i-м режиме. Поскольку смесевые биотоплива имеют меньшую теплотворную способность, топливную экономичность дизеля при его работе на этих топливах целесообразно оценивать не удель-

ным эффективным расходом топлива g_e , а эффективным КПД дизеля η_e . При этом для интегральной оценки работы дизеля на режимах 13-ступенчатого цикла использован условный эффективный КПД

$$\eta_{e\,\mathrm{yc}\pi} = \frac{3\,600}{H_U\,g_{e\,\mathrm{yc}\pi}},$$

где H_U — низшая теплота сгорания топлива, МДж/кг.


Условный эффективный КПД рассчитан с использованием указанной методики и данных табл. 2 и рис. 5, *а*. Результаты расчетов этих параметров представлены в табл. 3.

Приведенные в табл. 3 данные подтверждают возможность улучшения экологических показателей дизеля Д-245.12С при его переводе с ДТ на исследуемую смесь. При такой смене вида топлива отмечено заметное снижение дымности ОГ: на режиме максимальной мощности при $n=2400~{\rm Muh}^{-1}$ — на 46,7 %, на режиме максимального крутящего момента при $n=1500~{\rm Muh}^{-1}$ — на 5,6 %. При этом интегральный на режимах 13-ступенчатого цикла эффективный КПД $\eta_{e~{\rm усл}}$ снизился с 0,351 до 0,341, т. е. на 2,8 %, удельный выброс оксидов азота $e_{{\rm NO}x}$ уменьшился с 5,948 до 5,718 г/(кВт·ч), т. е. на 3,9 %, удельный выброс монооксида углерода $e_{{\rm CO}}$ снизился с 2,782 до 2,171 г/(кВт·ч), т. е. на 22,0 %, а удельный массовый выброс несгоревших углеводородов $e_{{\rm CH}x}$ сократился с 1,006 до 0,813 г/(кВт·ч), т. е. на 19,2 % (см. табл. 3).

Определенный интерес представляет вопрос о влиянии состава смесевого биотоплива на характеристики дизеля. Оценка этого влияния позволяет провести оптимизацию состава смесевого биотоплива. С этой целью выполнены исследования дизеля Д-245.12С на чистом ДТ и смесевых биотопливах, содержащих до 40 % (об.) МЭМП (рис. 6 и 7). Результаты этих исследований также приведены в табл. 3.

Характеристики дизеля Д-245.12С (рис. 6, a) свидетельствуют о том, что увеличение содержания МЭПМ в смесевом биотопливе $C_{\rm MЭПМ}$ от 0 до 40 % приводит к некоторому росту часового расхода топлива $G_{\rm T}$. Так, на режиме максимального крутящего момента при $n=1\,500\,$ мин $^{-1}$ часовой расход топлива увеличился от 12,51 до 13,14 кг/ч, а на режиме максимальной мощности при $n=2\,400\,$ мин $^{-1}$ — от 19,23 до 20,07 кг/ч. Однако крутящий момент двигателя M_e и коэффициент избытка воздуха α сравнительно слабо зависят от концентрации $C_{\rm MЭПМ}$ во всем исследованном диапазоне ее изменения.

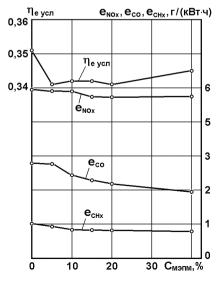

Характеристики удельного эффективного расхода топлива g_e , эффективного КПД дизеля η_e и дымности ОГ K_x в зависимости от концентрации МЭПМ в смесевом биотопливе $C_{\rm MЭПМ}$ приведены на

Рис. 6. Зависимости часового расхода топлива $G_{\rm T}$ дизеля Д-245.12С, крутящего момента M_e и коэффициента избытка воздуха α (a), удельного эффективного расхода топлива g_e , эффективного КПД двигателя η_e и дымности ОГ K_x (δ) от содержания метилового эфира подсолнечного масла $C_{\rm MЭПМ}$ в смесевом биотопливе:

I — на режиме максимальной мощности при $n=2\,400\,\mathrm{muh}^{-1};\,2$ — на режиме максимального крутящего момента при $n=1\,500\,\mathrm{muh}^{-1}$

рис. 6, δ и в табл. 3. Увеличение концентрации МЭПМ в смесевом биотопливе $C_{\text{МЭПМ}}$ от 0 до 40 % сопровождалось ростом удельного эффективного расхода топлива. На режиме максимального крутящего момента при $n=1\,500\,\,\mathrm{muh^{-1}}$ расход топлива увеличился от 222,1 до 234,5 г/(кВт·ч), на режиме максимальной мощности при $n=2\,400\,\,\mathrm{muh^{-1}}$ — от 246,6 до 257,0 г/(кВт·ч), но при этом эффективный КПД дизеля η_e изменялся сравнительно слабо. Вместе с тем отмечена сильная зависимость дымности ОГ от состава смесевого биотоплива. При росте $C_{\mathrm{МЭПМ}}$ от 0 до 40 % на режиме максимального крутящего момента при $n=1\,500\,\,\mathrm{muh^{-1}}$ дымность ОГ K_x снизилась от

36 до 25 % по шкале Хартриджа, а на режиме максимальной мощности при $n = 2\,400\,$ мин⁻¹ — от 15 до 6 % по шкале Хартриджа (в 2,5 раза).

Рис. 7. Зависимости условного эффективного КПД двигателя $\eta_{e \text{ усл}}$ и удельных массовых выбросов с ОГ дизеля Д-245.12С оксидов азота e_{NOx} , монооксида углерода e_{CO} и несгоревших углеводородов e_{CHx} от содержания метилового эфира подсолнечного масла $C_{\text{МЭПМ}}$ в смесевом биотопливе на режимах 13-ступенчатого пикла

Характеристики и значения удельных массовых выбросов токсичных компонентов e_{NOx} , e_{CO} , e_{CHx} , представленные на рис. 7 и в табл. 3, подтвердили возможность заметного улучшения показателей токсичности ОГ исследуемого дизеля при использовании смесей дизельного топлива и МЭПМ. При росте содержания МЭПМ в ДТ $C_{\text{МЭПМ}}$ от 0 до 40 % удельные массовые на режимах 13-ступенчатого испытательного цикла выбросы оксидов азота NO_x снизились с 5,948 до 5,742 г/(кВт·ч), т. е. на 3,5 %, монооксида углерода CO — с 2,782 до 1,949 г/(кВт·ч), т. е. на 29,9 %, несгоревших углеводородов CH_x — от 1,006 до 0,784 г/(кВт·ч), т. е. на 22,1 %. Одновременно отмечено незначительное снижение условного эффективного КПД двигателя $\eta_{e\, ycn}$ на 1,7 % — от 0,351 при $C_{\text{МЭПМ}}$ = 0 до 0,345 при $C_{\text{МЭПМ}}$ = 40 %.

В целом проведенные исследования подтвердили возможность эффективного использования смесей дизельного топлива с МЭПМ в качестве топлива для отечественных дизелей. В исследуемом диапазоне изменения содержания МЭПМ в нефтяном ДТ наилучшее сочетание показателей топливной экономичности и токсичности ОГ дизеля Д-245.12С достигнуто при его работе на смеси 60 % ДТ и 40 % МЭПМ (при $C_{\rm MЭПМ}$ = 40 %).

ЛИТЕРАТУРА

- [1] Александров А.А. ред., Архаров И.А., Марков В.А. ред. Альтернативные топлива для двигателей внутреннего сгорания. Москва, ООО НИЦ Инженер; ООО Онико-М, 2012, 791 с.
- [2] Орсик Л.С., Сорокин Н.Т., Федоренко В.Ф. ред. Биоэнергетика: Мировой опыт и прогнозы развития. Москва, ФГНУ Росинформагротех, 2008, 404 с.
- [3] Марков В.А., Девянин С.Н., Семенов В.Г. и др. *Использование растительных масел и топлив на их основе в дизельных двигателях*. Москва, ООО НИЦ Инженер; ООО Онико-М, 2011, 536 с.
- [4] Льотко В., Луканин В.Н., Хачиян А.С. *Применение альтернативных топлив в двигателях внутреннего сгорания*. Москва, Изд-во МАДИ (ТУ), 2000, 311 с.
- [5] Васильев И.П. Влияние топлив растительного происхождения на экологические и экономические показатели дизеля. Луганск, Изд-во Восточно-украинского ун-та им. В. Даля, 2009, 240 с.
- [6] Zubik J., Sorenson S.C., Goering C.E. Diesel Engine Combustion of Sunflower Oil Fuels. *Transactions of the ASAE*, 1984, vol. 27, no. 5, pp. 1252–1256.
- [7] Kaufman K.R., Ziejewski M. Sunflower Methyl Esters for Direct Injected Diesel Engines. *Transactions of the ASAE*, 1984, vol. 27, no. 6, pp. 1626–1633.
- [8] Ikilic C., Yucesu H. Investigation of the Effect of Sunflower Oil Methyl Ester on the Performance of a Diesel Engine. *Energy Sources*, 2006, vol. 27, no. 13, pp. 1225–1234.
- [9] Марков В.А., Девянин С.Н., Маркова В.В. Работа транспортного дизеля на смеси дизельного топлива и метилового эфира подсолнечного масла. *Грузовик&*, 2010, № 9.

Статья поступила в редакцию 21.06.2013

Ссылку на эту статью просим оформлять следующим образом:

Марков В.А., Девянин С.Н., Нагорнов С.А., Лобода С.С. Использование смесей дизельного топлива и метилового эфира подсолнечного масла в качестве топлива для транспортных дизелей. *Инженерный журнал: наука и инновации*, 2013, вып. 5. URL: http://engjournal.ru/catalog/machin/criogen/722.html

Марков Владимир Анатольевич родился в 1958 г., окончил МВТУ им. Н.Э. Баумана в 1981 г. Д-р техн. наук, профессор кафедры «Теплофизика» МГТУ им. Н.Э. Баумана. Автор более 300 научных работ в области автоматического управления и регулирования двигателей внутреннего сгорания. e-mail: markov@power.bmstu.ru

Девянин Сергей Николаевич родился в 1954 г., окончил Московский автомобильно-дорожный институт (МАДИ) в 1976 г. Д-р техн. наук, профессор, заведующий кафедрой «Тракторы и автомобили» Московского государственного агроинженерного университета (МГАУ) им. В.П. Горячкина. Автор более 150 научных работ в области топливоподачи дизелей. e-mail: devta@rambler.ru

Нагорнов Станислав Александрович родился в 1949 г., окончил Тамбовский институт химического машиностроения в 1972 г. Заместитель директора ГНУ ВНИИТиН Россельхозакадемии по научной работе, д-р техн. наук, профессор Тамбовского государственного технического университета. Автор более 300 научных работ в области эффективного использования нефтепродуктов и биотоплив в автотракторной технике. e-mail: snagornov@yandex.ru

Станислав Сергеевич Лобода родился в 1993 г., студент кафедры «Поршневые двигатели» МГТУ им. Н.Э. Баумана. Специализируется в области использования альтернативных топлив в двигателях внутреннего сгорания. e-mail: st-loboda@yandex.ru