Инженерный журнал: наука и инновацииЭЛЕКТРОННОЕ НАУЧНО-ТЕХНИЧЕСКОЕ ИЗДАНИЕ
свидетельство о регистрации СМИ Эл № ФС77-53688 от 17 апреля 2013 г. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Статья

Методика применения численного моделирования динамики многокоординатного фрезерования сложнопрофильных деталей при проектировании технологического процесса

Опубликовано: 16.11.2012

Авторы: Воронов С.А., Киселев И.А., Аршинов С.В.

Опубликовано в выпуске: #6(6)/2012

DOI: 10.18698/2308-6033-2012-6-260

Раздел: Инженерные науки | Рубрика: Теоретическая механика. Проектирование механизмов и машин

Рассмотрены вопросы учета динамических эффектов при разработке технологического процесса многокоординатной обработки фрезерованием сложнопрофильных податливых деталей. Предлагаемая методика моделирования динамики фрезерования состоит из динамической модели инструмента, динамической модели обрабатываемой детали на базе метода конечных элементов и алгоритма геометрического моделирования, с помощью которого рассчитаны усилия резания и смоделирован процесс регенерации поверхности заготовки. Результаты моделирования дают возможность существенно улучшить качество и повысить производительность обработки за счет рационального выбора режимов, исключающих появление нежелательных динамических эффектов.


Литература
[1] Tobias S.A., Fishwick W. Theory of regenerative machine tool chatter // The Engineer. –1958. – Vol. 205. – P. 199–203
[2] Tlusty J., Polacek M. The stability of the machine tool against self-excited vibration in machining // ASME Production Engineering Research Conference. – Pittsburg, 1963. – P. 465–474
[3] Merritt H.E. Theory of self-excited machine tool chatter // ASME Journal of Engineering for Industry. –1965. – November. – P. 447–454
[4] Opitz H., Bernardi F. Investigation and calculation of the chatter behaviour of lathes and milling machines // Annals of the CIRP. – 1970. – Vol. 18. – P. 335–343
[5] Sridhar R., Hohn R.E., Long G.W. A stability algorithm for the general milling process: Contribution to machine tool chatter research-7 // ASME Journal of Engineering for Industry. – 1968. – Vol. 90. – P. 330–334
[6] Altin tas Y. Manufacturing automation. – Camridge: Camridge University Press, 2000. – 286 p.
[7] Altintas Y., Budak E. Analytical prediction of stability lobes in milling // Annals of the CIRP. – 1995. – Vol. 44/1. – P. 357–362
[8] Tlusty J., Ismail F. Special aspects of chatter in milling // ASME Journal of Vibration, Stress, and Reliability in Design. – 1983. – Vol. 105. – P. 24–32
[9] Tlusty J., Ismail F. Basic non-linearity in machining chatter // Annals of the CIRP. – 1981. – Vol. 30. – P. 229–304
[10] Smith S., Tlusty J. Efficient simulation programs for chatter in milling // Annals of the CIRP. – 1993. – Vol. 42/1. – P. 463–466
[11] Minis I., Yanushevsky T. A new theoretical approach for the prediction of machine tool chatter in milling // Trans. ASME Journal of Engineering for Industry. – 1993. – Vol. 115. – P. 1–8
[12] Insperger T., Stepan G. Stability of the milling process // Periodical Polytechnic-Mechanical Engineering. – 2000. – Vol. 44/1. – P. 47–57
[13] Budak E., Altintas Y. Analytical prediction of chatter stability in milling. Part I: General formulation // ASME J. Dyn. Syst., Meas., Control. – 1998. – Vol. 120. – P. 22–30
[14] Budak E., Altintas Y. Analytical prediction of chatter stability conditions for multi-degree of systems in milling. Part II: Applications // ASME J. Dyn. Syst., Meas., Control. – 1998. – Vol. 120. – P. 31–36
[15] Merdol D., Altintas Y. Multi-frequency solution of chatter stability for low immersion milling // ASME J. Manuf. Sci. Eng. – 2004. – Vol. 126.3. – P. 459–466
[16] Stability of up-milling and down-milling. Part 1: Alternative analytical methods / T. Insperger, B.P. Mann, G. Stepan, P.V. Bayly // Int. J. of Machine Tools and Manufacture. – 2003. – Vol. 43. – P. 25–34
[17] Kline W.A., Devor R. E., Shareef I. A. The prediction of surface accuracy in end milling // ASME J. Eng. Ind. – 1982. – Vol. 104. – P. 272–278
[18] Elbestawi M. A., Sagherian R. Dynamic modeling for the prediction of surface errors in milling of thin-walled sections // Theor. Comput. Fluid Dyn. – 1991. – Vol. 25. – P. 215–228
[19] Campomanes M.L., Altintas Y. An improved time domain simulation for dynamic milling at small radial immersions // Trans. ASME. J. of Manuf. Sci. and Eng. – 2003. – Vol. 125. – P. 416–425
[20] Paris H., Peigne G., Mayer R. Surface shape prediction in high-speed milling // Int. J. of Machine Tools and Manufacture. – 2004. – Vol. 44/15. – P. 1567–1576
[21] Altintas Y., Lee P. A general mechanics and dynamics model for helical end mills // Annals of the CIRP. – 1996. – Vol. 45. – P. 59–64
[22] Ozturk E., Budak E. Modeling of 5-axis milling processes // Machining Science and Technology. – 2007. – Vol. 11, no. 3. – P. 287–311
[23] Budak E., Ozturk E., Tunc L.T. Modeling and simulation of 5-axis milling processes // Annals of CIRP. Manufacturing Technology. – 2009. – Vol. 58. – P. 347–350
[24] Ozturk B., Lazoglu I. Machining of free-form surfaces. Part I: Analytical chip load // Int. J. of Machine Tools and Manufacture. – 2006. – Vol. 46. – P. 728–735
[25] Altintas Y., Montgomery D., Budak E. Dynamic peripheral milling of flexible structures // Comput. Model. Simul. Manuf. Proc. ASME. – 1990. – MD 20. – P. 25–35
[26] Altintas Y., Montgomery D., Budak E. Dynamic peripheral milling of flexible structures // J. Eng. Ind. ASME. – 1992. – Vol. 114 (2). – P. 137– 145
[27] Budak E., Altintas Y. Modeling and avoidance of static form errors in peripheral milling of plates // Int. J. of Machine Tools and Manufacture. – 1995. – Vol. 35 (3). – P. 459–476
[28] Tsai J.S., Liao C.L. Finite-element modelling of static surface errors in the peripheral milling of thin-walled workpiece // J. of Materials Processing Technology. – 1999. – Vol. 94. – P. 235–246
[29] Milling error prediction and compensation in machining of low-rigidity parts / S. Ratchev, S. Liu, W. Huang, A. Becker // Int. J. of Machine Tools and Manufacture. – 2004. – Vol. 44 (15). – P. 1629–1641
[30] Stability limits of milling considering the flexibility of the workpiece and the machine / U. Bravo, O. Altuzarra, L.N. Lopez de Lacalle, J.A. Sanchez, F.J. Campa // Int. J. of Machine Tools and Manufacture. – 2005. – Vol. 45. – P. 1669–1680
[31] Influence of material removal on the dynamic behaviour of thin-walled structures. Peripheral milling / V. Thevenot, L. Arnaud, G. Dessein, G. Gazenave-Larroche // Machining Science and Technology. – 2006. – Vol. 10, no. 3. – P. 275–287
[32] Simulation of low rigidity part machining applied to thin-walled structures / L. Arnaud, O. Gonzalo, S. Seguy, H. Jauregi, G. Peigne // Int. J. of Advanced Manufacturing Technology. – 2011. – Vol. 54. – P. 479–488
[33] Modeling regenerative workpiece vibrations in five-axis milling / K. Weinert, P. Kersting, T. Surmann, D. Biermann // Prod. Eng. Res. Devel. – 2008. – No. 2. – P. 255–260
[34] Kersting P., Biermann D. Simulation concept for predicting workpiece vibrations in five-axis milling // Machining Science and Technology. – 2009. – Vol. 13, no. 2. – P. 196–209
[35] Biermann D., Kersting P., Surmann T. A general approach to simulating workpiece vibrations during five-axis milling of turbine blades // CIRP Annals. Manufacturing Technology. – 2010. – Vol. 59. – P. 125–128
[36] Bathe K. Finite element procedures. – NJ: Prentice-Hall, Inc., 1996. – 1037 p.
[37] Воронов С.А., Киселев И.А., Николаев С.М. Расчетно-экспериментальная методика идентификации параметров модели механической системы с помощью модального анализа: cб. тр. 5-й Междунар. конф. «Проблемы механики современных машин», Улан-Удэ, 26–30 июня 2012 г. – Улан-Удэ: Изд-во ВСГУТУ, 2012. – С. 96–100
[38] Voronov S., Kiselev I. Dynamics of flexible detail milling // Proc. of the Inst. of Mech. Eng. Part K: Journal of Multi-body Dynamics. – 2011. – Vol. 225, no. 3. – doi:10.1177/1464419311418735
[39] Lee P., Altintas Y. Prediction of ball-end milling forces from orthogonal cutting data // Int. J. of Machine Tool and Manufacture. – 1996. – Vol. 36 (9). – P. 1059–1072
[40] Budak E., Altintas Y., Armarego E.J.A. Prediction of milling force coefficients from orthogonal cutting data // ASME J. of Manuf. Sci. and Eng. – 1996. – Vol. 118(2). – P. 216–224
[41] Calculation of the specific cutting coefficients and geometrical aspects in sculptured surface machining / A. Lamikiz, L. N. Lopez de Lacalle, J. A. Sanchez, U. Bravo // Machining Science and Technology. – 2005. – Vol. 9, no. 3. – P. 411–436
[42] Voelcker H.B., Hunt W.A. The role of solid modeling in machining process modeling and NC-verification // Technical Report 810195. SAE. – 1981
[43] General geometric modeling approach for machining process simulation / H. El-Mounayri, M.A. Elbestawi, A.D. Spence, S. Bedi // Int. J. Adv. Manuf. Technol. – 1997. – Vol. 13. – P. 237–247
[44] Spence A.D., Altintas Y. A Solid modeller based milling process simulation and planning system // Trans. ASME. – 1994. – Vol. 116. – P. 61–69
[45] Weinert K., Surmann T. Approaches for modeling engagement conditions in milling simulations / C.A. van Luttervelt (ed.) // 4th CIRP Int. Workshop Modeling of Machining Operations. Delft (The Netherlands). August 17–18, 2001. – P. 67–69
[46] Weinert K., Surmann T. Modeling of surface structures resulting from vibrating milling tools: Production Engineering – Research and Development // Annals of the German Academic Society for Production Engineering. – 2006. – XIII (2). – P. 133–138
[47] Surmann T., Enk D. Simulation of milling tool vibration trajectories along changing engagement conditions // Int. J. of Machine Tools and Manufacture. – 2007. – Vol. 47 (9). – P. 1442–1448
[48] Pham T., Kim Y., Ko S. Development of a software for effective cutting simulation using advanced octree algorithm // Proc. of the 2007 Int. Conf. Comput. Sc. and its Applications. – P. 324–334
[49] Meagher D. Geometric modeling using octree method // Comput. Graphics and Image Proc. – 1982. – Vol. 19. – P. 129–147
[50] A cutting simulation system for machinability evaluation using a workpiece model / S. Takata, M.D. Tsai, M. Inui, T. Sata // Annals of the CIRP. – 1989. – Vol. 38/1. – P. 417–420
[51] Kim G.M., Cho P.J., Chu C.N. Cutting force prediction of sculptured surface ball-end milling using Z-map // Int. J. of Machine Tools and Manufacture. – 2000. – Vol. 40. – P. 277–291
[52] Guzel B.U., Lazoglu I. Sculpture surface machining: a generalized model of ball-end milling force system // Int. J. of Machine Tools and Manufacture. – 2003. – Vol. 43 (5). – P. 453–462
[53] Ловыгин А.А., Васильев А.В., Кривцов С.Ю. Современный станок с ЧПУ и CAD/CAM-система. – М.: «Эльф ИПР», 2006. – 286 с.