Инженерный журнал: наука и инновацииЭЛЕКТРОННОЕ НАУЧНО-ТЕХНИЧЕСКОЕ ИЗДАНИЕ
свидетельство о регистрации СМИ Эл № ФС77-53688 от 17 апреля 2013 г. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Статья

Точные решения и нелинейная неустойчивость реакционно-диффузионных систем уравнений с запаздыванием

Опубликовано: 01.10.2013

Авторы: Полянин А.Д.

Опубликовано в выпуске: #4(16)/2013

DOI: 10.18698/2308-6033-2013-4-662

Раздел: Фундаментальные науки | Рубрика: Математика

В статье рассмотрен широкий класс нелинейных реакционно-диффузионных систем уравнений с запаздыванием. Получены многопараметрические точные решения с обобщенным разделением переменных, содержащие произвольное число произвольных постоянных. Приведено решение, описывающие нелинейное взаимодействие стоячей волны с бегущей волной. Определена область неустойчивости решений системы с запаздыванием.


Литература
[1] Wu J. Theory and Applications of Partial Functional Differential Equations. New York, Springer-Verlag, 1996, 429 p.
[2] Smith H.L., Zhao X.-Q. Global asymptotic stability of travelling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal, 2000, vol. 31, pp. 514-534
[3] Wu J., Zou X. Traveling wave fronts of reaction-diffusion systems with delay. J. Dynamics and Differential Equations, 2001, vol. 13, no. 3, pp. 651-687
[4] Huang J., Zou X. Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays. J. Math. Anal. Appl, 2002, vol. 271, pp. 455-466
[5] Faria T., Trofimchuk S. Nonmonotone travelling waves in a single species reaction-diffusion equation with delay. J. Differential Equations, 2006, vol. 228, pp. 357-376
[6] Trofimchuk E., Tkachenko V., Trofimchuk S. Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay. J. Differential Equations, 2008, vol. 245, pp. 2307-2332
[7] Mei M., So J., Li M., Shen S. Asymptotic stability of travelling waves for Nicholson’s blowflies equation with diffusion. Proc. Roy. Soc. Edinburgh Sect. A, 2004, vol. 134, pp. 579-594
[8] Gourley S.A., Kuan Y. Wavefronts and global stability in time-delayed population model with stage structure. Proc. Roy. Soc. London A, 2003, vol. 459, pp. 1563-1579
[9] Pao C. Global asymptotic stability of Lotka — Volterra competition systems with diffusion and time delays. Nonlinear Anal.: Real World Appl, 2004, vol. 5, no. 1, pp. 91-104
[10] Liz E., Pinto M., Tkachenko V., Trofimchuk S. A global stability criterion for a family of delayed population models. Quart. Appl. Math., 2005, vol. 63, pp. 56-70
[11] Meleshko S.V., Moyo S. On the complete group classification of the reaction-diffusion equation with a delay. J. Math. Anal. Appl., 2008, vol. 338, pp. 448-466
[12] Arik S. Global asymptotic stability of a larger class of neural networks with constant time delay. Physics Letters A, 2003, vol. 311, pp. 504-511
[13] Cao J. New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Physics Letters A, 2003, vol. 307, pp. 136-147
[14] Cao J., Liang J., Lam J. Exponential stability of high-order bidirectional associative memory neural networks with time delays. Physica D, 2004, vol. 199, no. 3-4, pp. 425-436
[15] Lu H.T., Chung F.L., He Z.Y. Some sufficient conditions for global exponential stability of delayed Hopfield neural networks. Neural Networks, 2004, vol. 17, pp. 537-444
[16] Cao J.D., Ho D.W.C. A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach. Chaos, Solitons & Fractals, 2005, vol. 24, pp. 1317-1329
[17] Liao X.X., Wang J., Zeng Z. Global asymptotic stability and global exponential stability of delayed cellular neural networks. IEEE Trans. Circ. SystII, 2005, vol. 52, no. 7, pp. 403-409
[18] Song O.K., Cao J.D. Global exponential stability and existence of periodic solutions in BAM networks with delays and reaction diffusion terms. Chaos, Solitons & Fractals, 2005, vol. 23, no. 2, pp. 421-430
[19] Zhao H. Exponential stability and periodic oscillatory of bidirectional associative memory neural network involving delays. Neurocomputing, 2006, vol. 69, pp. 424-448
[20] Wang L., Gao Y. Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays. Physics Letters A, 2006, vol. 350, pp. 342-348
[21] Lu J.G. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos, Solitons & Fractals, 2008, vol. 35, pp. 116-125
[22] Полянин А.Д., Зайцев В.Ф., Журов А.И. Методы решения нелинейных уравнений математической физики и механики. Москва, Физматлит, 2005, 256 с.
[23] Polyanin A.D., Zaitsev V.F. Handbook of Nonlinear Partial Differential Equations, Second Edition. Boca Raton: Chapman & Hall/CRC Press, 2012, 1912 p.
[24] Дородницын В.А. Об инвариантных решениях уравнения нелинейной теплопроводности с источником. Журн. вычисл. матем. и матем. физики, 1982, т. 22, № 6, с. 1393-1400
[25] Ibragimov N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations, V 1, Symmetries, Exact Solutions and Conservation Laws. Boca Raton: CRC Press, 1994, 448 p.
[26] Galaktionov V.A., Svirshchevskii S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Boca Raton: Chapman & Hall/CRC Press, 2006, 498 p.
[27] Беллман Р., Кук К. Дифференциально-разностные уравнения. Москва, Мир, 1967, 548 c.
[28] Hale J. Functional Differential Equations. New York, Springer-Verlag, 1977, 447 p.
[29] Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston, Academic Press, 1993, 412 p.
[30] Smith H.L. An Introduction to Delay Differential Equations with Applications to the Life Sciences. New York, Springer-Verlag, 2010, 183 p.
[31] Брацун Д.А., Захаров А.П. К вопросу о численном расчете пространственно-распределенных динамических систем с запаздыванием по времени. Вестник Пермского ун-та. Сер.: Математика. Механика. Информатика, 2012, вып. 4 (12), с. 32-41