Определение спектрально-энергетических порогов лазерной абляции под действием ультракоротких лазерных импульсов в вакууме
Авторы: Локтионов Е.Ю., Протасов Ю.С., Протасов Ю.Ю.
Опубликовано в выпуске: #10(22)/2013
DOI: 10.18698/2308-6033-2013-10-1036
Раздел: Машиностроение | Рубрика: Плазменные технологии
С использованием интерференционного микроскопа, выполненного по схеме Линника, экспериментально определены пороги лазерной абляции тонкопленочных металлических и полимерных мишеней при воздействии ультракоротких (45 фс) лазерных импульсов (266, 400, 800 нм). В качестве мишеней использовались микротомные срезы полимеров толщиной 5...7 мкм и металлические тонкие пленки, полученные методом магнетронного распыления. Используемая методика определения порогов, основанная на регистрации изменения диаметра кратера в зависимости от энергии импульса падающего излучения, позволяет снизить требования к оптическим свойствам поверхности исследуемого образца по сравнению с методикой, основанной на регистрации изменения глубины или объема кратера.
Литература
[1] Kuper S., Brannon J. KrF-laser ablation of polyurethane. Applied Physics A: Materials Science & Processing, 1993. vol. 57, no. 3, pp. 255-259
[2] Haglund R.F., Miller J.C. (eds.). Laser Ablation and Desorption. Vol. 30. London: Academic Press, 1998. 689 p.
[3] Miller J.C., Haglund Jr R.F., (edS.). Laser ablation mechanisms and applications. Vol. 389. Berlin, Heidelberg, Springer-Verlag, 1991, 360 p.
[4] Johnson S., Bubb D., Haglund R. Phase explosion and recoil-induced ejection in resonant-infrared laser ablation of polystyrene. Applied Physics A. 2009, vol. 96, no. 3. pp. 627-635
[5] Pakhomov A.V., Thompson M.S., Gregory D.A. Laser-induced phase explosions in lead, tin and other elements: microsecond regime and UV-emission. Journal of Physics D., 2003, vol. 36, no. 17. pp. 2067-2075
[6] Miotello A., Kelly R. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Applied Physics A, 1999, vol. 69, no. 7. pp. S67-S73
[7] Hashida M., Semerok A.F., Gobert O., Petite G., Izawa Y., Wagner J.F. Ablation threshold dependence on pulse duration for copper. Applied Surface Science. 2002, vol. 197-198, pp. 862-867
[8] Кононенко Т.В., Конов В.И., Гарнов С.В., Данилеус Р., Пискарскас А., Тамошкакус Г., Даусингер Ф. Сравнительное исследование абляции материалов фемтосекундными и пико/наносекундными лазерными импульсами. Квантовая электроника, 1999, т. 28, № 8, с. 167-172
[9] Semerok A., Salle B., Wagner J.-F., Petite G., Gobert O., Meynadier P., Perdrix M. Microablation of pure metals: laser plasma and crater investigations. NonresonantLaser-Matter Interaction (NILMI-10). SPIE, 2001, pp. 153-164
[10] Pakhomov A.V., Lin J., Herren K.A. Effect of air pressure on propulsion with TEA CO2 laser. High-Power Laser Ablation V. Taos, NM, USA, SPIE, 2004, pp. 1017-1027
[11] Rebollar E., Bounos G., Oujja M., Georgiou S., Castillejo M. Morphological and chemical modifications and plume ejection following UV laser ablation of doped polymers: Dependence on polymer molecular weight. Applied Surface Science, 2007, vol. 253, no. 19. pp. 7820-7825
[12] Gaspard S., Oujja M., Rebollar E., Walczak M., Diaz L., Santos M., Castillejo M. IR laser ablation of doped poly(methyl methacrylate). Applied Surface Science, 2007, vol. 253, no. 15, pp. 6442-6446
[13] Bonse J., Solis J., Urech L., Lippert T., Wokaun A. Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films. Applied Surface Science, 2007, vol. 253, no. 19. pp. 7787-7791
[14] Dumont T., Bischofberger R., Lippert T., Wokaun A. Gravimetric and profilometric measurements of the ablation rates of photosensitive polymers at different wavelengths. Applied Surface Science, 2005, vol. 247, no. 1-4. pp. 115-122
[15] Huang L., Yang Y., Wang Y., Zheng Z., Su W. Measurement of transit time for femtosecond-laser-driven shock wave through aluminium films by ultrafast microscopy. Journal of Physics D, 2009, vol. 42, no. 4, pp. 045-502
[16] Ситников Д.С., Комаров П.С., Овчинников А.В., Ашитков С.И. Фемтосекундная Фурье-интерферометрия неидеальной плазмы. ЖТФ, 2009, т. 79, № 4, с. 75-81
[17] Wefers L., Bosbach D., Rammensee W., Schollmeyer E. Determination of UV-laser induced surface structures by atomic force microscopy. Applied Surface Science, 1993, vol. 69, no. 1-4, pp. 418-423
[18] Hwang D.J., Misra N., Grigoropoulos C.P., Minor A.M., Mao S.S. In situ monitoring of laser cleaning by coupling a pulsed laser beam with a scanning electron microscope. Applied Physics A: Materials Science & Processing, 2008, vol. 91, no. 2, pp. 219-222
[19] Tallents G.J., Edwards M.H., Whittaker D.S., Mistry P., Pert G.J., Rus B., Mocek T., Kozlova M., Polan J., Praeg A., Stupka M., Homer P. X-ray lasers as probes to measure plasma ablation rates. Soft X-Ray Lasers and Applications VII. San Diego, CA, USA, SPIE, 2007, pp. 67020H-10
[20] Sinko J. Vaporization and shock wave dynamics for impulse generation in laser propulsion. Dis. Ph.D. Hunstsville, 2008, 249 p.
[21] Kautek W., Kruger J., Lenzner M., Sartania S., Spielmann C., Krausz F. Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps. Applied Physics Letters, 1996, vol. 69, no. 21. pp. 3146-3148
[22] Mitra A., Thareja R.K. Determination of laser ablation threshold of Teflon at different harmonics of Nd:YAG laser using photothermal deflection technique. Journal of Materials Science, 1999. vol. 34, no. 3. pp. 615-619
[23] Torrisi L., Borrielli A., Margarone D. Study on the ablation threshold induced by pulsed lasers at different wavelengths. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, vol. 255, no. 2. pp. 373-379
[24] Singh J.P., Thakur S.N. (eds.). Laser-Induced Breakdown Spectroscopy. Boston: Elsevier, 2007, 454 p.
[25] Stauter C., Gerard P., Fontaine J. Shock wave generated during laser ablation. High-Power Laser Ablation. Santa Fe, NM, USA, SPIE, 1998, pp. 961-970
[26] Porneala C., Willis D.A. Time-resolved dynamics of nanosecond laser-induced phase explosion. Journal of Physics D: Applied Physics, 2009, vol. 42, no. 15. pp. 155-503
[27] Sinko J., Mukundarajan V., Porter S., Kodgis L., Kemp C., Lassiter J., Lin J., Pakhomov A.V. Time-resolved force and ICCD imaging study of TEA CO2 laser ablation of ice and water. High-Power Laser Ablation VI. Taos, NM, USA, SPIE, 2006, p. 626131-12
[28] Giao M.A.P., Rodrigues N.A.S., Riva R., Schwab C. PVDF sensor in laser ablation experiments. Review of Scientific Instruments, 2004, vol. 75, no. 12, pp. 5213-5215
[29] Pakhomov A.V., Gregory D.A., Thompson M.S. Specific impulse and other characteristics of elementary propellants for ablative laser propulsion. AIAA Journal, 2002, vol. 40, no. 5, pp. 947-952
[30] Phipps C., Luke J., Funk D., Moore D., Glownia J., Lippert T. Laser impulse coupling at 130 fs. Applied Surface Science, 2006, vol. 252, no. 13, pp. 4838-4844
[31] Morozov A.A. Thermal model of pulsed laser ablation: back flux contribution. Applied Physics A: Materials Science & Processing, 2004, vol. 79, no. 4, pp. 997-999
[32] Kirkwood S.E., van Popta A.C., Tsui Y.Y., Fedosejevs R. Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper. Applied Physics A: Materials Science & Processing, 2005, vol. 81, no. 4. pp. 729-735
[33] Bonse J., Wiggins S.M., Solis J., Sturm H., Urech L., Wokaun A., Lippert T. Incubation behaviour in triazenepolymer thin films upon near-infrared femtosecond laser pulse irradiation. Journal of Physics: Conference Series, 2007, vol. 59, pp. 105-111
[34] Hopp B., Smausz T., Kokavecz J., Kresz N., Bor Z., Hild S., Marti O. Investigation of incubation in ArF excimer laser irradiated poly(methyl methacrylate) using pulsed force mode atomic force microscopy. Journal of Applied Physics, 2004, vol. 96, no. 10, pp. 5548-5551
[35] Graubner V.-M., Jordan R., Nuyken O., Lippert T., Hauer M., Schnyder B., Wokaun A. Incubation and ablation behavior of poly(dimethylsiloxane) for 266 nm irradiation. Applied Surface Science, 2002. vol. 197-198, pp. 786-790
[36] Blanchet G.B., Cotts P., Fincher J.C.R. Incubation: Subthreshold ablation of poly(methyl methacrylate) and the nature of the decomposition pathways. Journal of Applied Physics, 2000, vol. 88, no. 5, pp. 2975-2978
[37] Rosenfeld A., Lorenz M., Stoian R., Ashkenasi D. Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation. Applied Physics A: Materials Science & Processing, 1999, vol. 69, no. 1, pp. S373-S376
[38] Локтионов Е.Ю., Протасов Ю.С., Протасов Ю.Ю. Телех В.Д., Хазиев Р.Р. Разработка методики комбинированной интерферометрии светоэрозионных газоплазменных потоков и комплексной автоматизированной обработки ее результатов. Инженерный журнал: наука и инновации, 2013, вып. 10. URL: http: http://engjournal.ru/catalog/machin/plasma/1037.html
[39] Mannion P., Magee J., Coyne E., O'Connor G.M. Ablation thresholds in ultrafast laser micromachining of common metals in air. Opto-Ireland 2002: Optics and Photonics Technologies and Applications. Galway, Ireland, SPIE, 2003, pp. 470-478
[40] Andrew J.E., Dyer P.E., Forster D., Key P.H. Direct etching of polymeric materials using a XeCl laser. Applied Physics Letters. 1983, vol. 43, no. 8, pp. 717-719
[41] Sinko J.E., Scharring S., Eckel H.-A., Roser H.-P., Sasoh A. Measurement Issues in Pulsed Laser Propulsion. 6th International Symposium on Beamed Energy Propulsion. Scottsdale, Arizona, 2009, AIP, 2010, pp. 125-136