Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Aerodynamic characteristics of detachable fairing shells in a subsonic incompressible flow

Published: 05.07.2019

Authors: Grebeneva Yu.V., Lutsenko A.Yu., Nazarova D.K.

Published in issue: #7(91)/2019

DOI: 10.18698/2308-6033-2019-7-1898

Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts

The purpose of the work was to mathematically simulate the flow around the fairing shell of the launch vehicle at a low subsonic free-stream velocity in the α = 0...360° angle-of-attack range. The calculations were performed using the SolidWorks Flow Simulation software package and the open source OpenFoam package based on the use of numerical methods for simulating the motion of liquid and gas. Within the research, we obtained the flow patterns and the aerodynamic coefficients of the longitudinal and normal forces, the pitch moment, and calculated the aerodynamic quality of the shell. Furthermore, we determined the positions of the stable equilibrium of the model and revealed the features of the flowing around the shell of the combined form at flow from the convex and concave sides. Next, we analyzed the leeward lift-off zones and the zones with increased pressure on the windward surface during flow from the concave side. Finally, we compared the obtained characteristics with the experimental data of TsAGI.


References
[1] Sergeeva A.V. Servis v Rossii i za rubezhom — Services in Russia and abroad, 2007, no. 4. Available at: http://service-rusjournal.ru/index.php?do=cat&category=2007_4 (accessed February 10, 2019).
[2] Dyadkin A.A., Krylov A.N., Lutsenko A.Yu., Mikhaylova M.K., Nazarova D.K. Kosmicheskaya tekhnika i tekhnologiya — Space Engineering and Technology, 2016, no. 3. Available at: https://www.energia.ru/ktt/archive/2016/03-2016/03-02.pdf (accessed February 10, 2019).
[3] Lutsenko A.Yu. Nazarova D.K. Analiz rezultatov chislennogo modelirovaniya obtekaniya tonkoy obolochki pri sverkhzvukovykh skorostyakh nabegayushchego potoka [Analysis of the results of numerical simulation of thin shell flowing at supersonic free-stream velocities]. Aktualnye problemy rossiyskoy kosmonavtiki: Trudy XL Akademicheskikh chteniy po kosmonavtike. Sb. tez. [Actual problems of the Russian cosmonautics: Proceedings of the XL Academic readings in astronautics. Coll. of abstracts]. Moscow, RAS commission on development of scientific heritage of pioneers of space exploration, 2016, pp. 263–264.
[4] Bloy A.W., Durrant M.T. Aerodynamic Characteristics of an aerofoil with Small Trailing Edge Flaps. Wind Engineering, 1995, no. 22, pp. 167–172.
[5] Graham M., Muradian A., Traub L.W. Experimental Study on the Effect of Gurney Flap Thickness on Airfoil Performance. Journal of Aircraft, 2018, no. 7, pp. 897–902.
[6] Dyadkin A.A., Lutsenko A.Yu., Nazarova D.K. Nauchny vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii — Civil Aviation High Technologies, 2016, no. 223 (1), pp. 45–50. Available at: https://cyberleninka.ru/article/v/matematicheskoe-modelirovanie-obtekaniya-tonkostennyh-konstruktsiy-v-do-i-transzvukovom-diapazone-skorostey (accessed October 10, 2018).
[7] Dyadkin A.A., Krylov A.N., Lutsenko A.Yu., Nazarova D.K. Issledovaniya osobennostey aerodinamiki tonkostennykh obolochek pri sverkhzvukovykh skorostyakh s ispolzovaniem kompyuternogo modelirovaniya [Studies of the features of aerodynamics of thin-walled shells at supersonic speeds using computer simulation]. Tez. dokl. Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya «XXII Tupolevskie chteniya» [Conf. abstracts International Youth Scientific Conference “XXII Tupolev Readings”]. Kazan, Foliant Publ., 2015, vol. 1, pp. 68–71.
[8] Kosmicheskiy korabl «Federatsiya» [Spacecraft “Federation”]. Available at: https://ru.wikipedia.org/wiki/Федерация_(космический_корабль) (accessed October 10, 2018).
[9] Epikhin A.S. Opredelenie aerodinamicheskikh kharakteristik letatelnogo apparata pri dozvukovom obtekanii s uchetom deystviya lokalnykh vikhrevykh techeniy na elementy ego konstruktsii. Dis. … kand. tekhn. nauk [Determination of aerodynamic characteristics of an aircraft during subsonic flow around, taking into account the effect of local eddy currents on the elements of its design. Cand. eng. sc. diss.]. Moscow, 2018, 156 p.
[10] Jeffrey D.R.M., Hurst D.W., Zhang X. Aerodynamics of Gurney Flaps on a Single-Element High-Lift Wing. Journal of Aircraft, 2000, pp. 295–301.
[11] Delnero J.S. Comportamiento aerodinámico de perfiles de bajo Reynolds, inmersos en flujo turbulento. Tesis Doctoral. Facultad de Ingeniería, UNLP (2007), pp. 43–48.
[12] Kalugin V.T., Lutsenko A.Yu., Nazarova D.K. Izv. vuzov. Aviatsionnaya tekhnika – Russian Aeronautics, 2018, no. 3, pp. 81–87.
[13] Zhongcheng Wei, Jingxia Zhan, Xi He, Jinjun Wang. Influence of Gurney flaps on aerodynamic characteristics of a canard-configuration aircraft. Aircraft Engineering and Aerospace Technology 24, 2019.
[14] Pringale Kumar Das, Sombuddha Bagchi, Soham Mondal, Pranibesh Mandal. Experimental and Numerical Study of Velocity Profile of Air over an Aerofoil in a Free Wind Stream in Wind Tunnel. Advances in Materials, Mechanical and Industrial Engineering, 2019, pp. 649–669.
[15] Belchikhina A.A., Dolzhnenko N.N., Dubov Нu.B. Trudy TsAGI (TsAGI Proceedings), no. 2339. Moscow, 1987, pp. 4–7.