Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Indicators of efficiency of liquid nitrogen fuel cooling in tanks with integrated heat exchangers

Published: 24.03.2021

Authors: Aleksandrov A.A., Barmin I.V., Denisova K.I., Chugunkov V.V.

Published in issue: #3(111)/2021

DOI: 10.18698/2308-6033-2021-3-2064

Category: Aviation and Rocket-Space Engineering | Chapter: Ground Complexes, Launch Equipment, Aircraft Exploitation

The paper describes the fuel cooling system which uses liquid nitrogen in the tanks of ground complexes equipped with integrated heat exchangers. We analyzed the characteristics of cooling liquid fuel in tanks with integrated heat exchangers filled with antifreeze, when sparging antifreeze with liquid nitrogen. As a result of the analysis, we introduced the indicators to assess the efficiency of the considered technical solutions in comparison with the existing options for constructing these systems. Furthermore, we developed a mathematical model of the cooling process in the form of a system of equations for temporary changes in the temperature of antifreeze and fuel, including the changes at various modes of fuel mixing. The paper gives the results of studies carried out in order to increase the efficiency of fuel cooling processes at various flow rates of liquid nitrogen by organizing the processes of its heat exchange with the surfaces of the integrated heat exchanger and the use of various types of antifreeze.


References
[1] Aleksandrov A.A., Denisov O.E., Zolin A.V., Chugunkov V.V. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2013, no. 4, pp. 24–29.
[2] Aleksandrov A.A., Barmin I.V., Zolin A.V., Chugunkov V.V. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2020, iss. 3 (99). http://dx.doi.org/10.18698/2308-6033-2020-3-1965
[3] Aleksandrov A.A., Barmin I.V., Kunis I.D., Chugunkov V.V. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2016, no. 2, pp. 7–27.
[4] Komlev D.E., Solovev V.I. Okhlazhdenie naftila metodom kriogennogo barbotazha [Cooling of naphthyl by cryogenic sparging]. Novosti tekhniki: sb. [Engineering News]. Moscow, KBTM Publ., 2004, pp. 137–141.
[5] Pavlov S.K., Chugunkov V.V. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 1 (49), pp. 2. http://dx.doi.org/10.18698/2308-6033-2016-1-1461
[6] Aleksandrov A.A., Barmin I.V., Pavlov S.K., Chugunkov V.V. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2017, no. 4, pp. 86–95.
[7] Aleksandrov A.A., Barmin I.V., Pavlov S.K., Chugunkov V.V. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 1 (85). http://dx.doi.org/10.18698/2308-6033-2019-1-1842
[8] Aleksandrov A.A., Barmin I.V., Pavlov S.K., Chugunkov V.V. Vestnik MGTU im. N.E. Baumana. Seriia Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2019, no. 3, pp. 22–33. DOI: 10.18698/1812-3368-2019-3-22-33
[9] Aleksandrov A.A., Barmin I.V., Denisova K.I., Chugunkov V.V. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2017, no. 3, pp. 4–17.
[10] Chugunkov V.V., Denisova K.I., Pavlov S.K. Effective models of using liquid nitrogen for cooling liquid media. AIP Conference Proceedings, 2019, vol. 2171, art. no. 200002. DOI: 10.1063/1.5133360
[11] Chugunkov V.V., Denisova K.I. Fuel cooling with liquid nitrogen in a tank with a built-in heat exchanger. AIP Conference Proceedings, 2021, vol. 2318, art. no. 100003. https://doi.org/10.1063/5.0036228
[12] Kobyzev S.V. Nauka i obrazovanie. MGTU im. N.E. Baumana — Science and Education: Technical Magazine of BMSTU, 2011, no. 11. Available at: http://technomag.neicon.ru/doc/245147.html (accessed December 20, 2016).
[13] Kobyzev S.V. Modelirovanie massoobmennykh protsessov pri obezvozhivanii uglevodorodnogo raketnogo goryuchego barbotirovaniem azotom [Simulation of mass transfer processes during dehydration of hydrocarbon rocket fuel by sparging with nitrogen]. Aktualnye problemy Rossiiskoy kosmonavtiki. Mater. XXXVI Akademicheskikh chteniy po kosmonavtike [Actual problems of the Russian cosmonautics. Materials of XXXVI Academic Readings on Astronautics]. Moscow, Komissiya RAS Publ., 2012, pp. 356–357.
[14] Kobyzev S.V. Metodika poverochnogo rascheta protsessa osushki uglevodorodnogo goryuchego metodom barbotazha gazoobraznym azotom [Calculation methodology for hydrocarbon fuel drying process by sparging with gaseous nitrogen]. Aktualnye problemy Rossiiskoy kosmonavtiki. Mater. XXXVII Akade-micheskikh chteniy po kosmonavtike [Actual problems of the Russian cosmonautics. Materials of XXXVII Academic Readings on Astronautics]. Moscow, Komissiya RAS Publ., 2013, pp. 385–386.
[15] Domashenko A.M., Blinova I.D. Khimicheskoe i neftegazovoe mashinostroenie — Chemical and Petroleum Engineering, 2007, no. 12, pp. 17–19.
[16] Domashenko O.E. Sistemy termostatirovaniya [Thermostatic control systems]. In: Istoriya razvitiya otechestvennoy nazemnoy raketno-kosmicheskoy infrastruktury [History of development of domestic ground-based rocket and space infrastructure]. Moscow, Izd. dom Stolichnaya entsiklopediya Publ., 2017, pp. 299–301.
[17] Nakoryakov V.E., Tsoy A.N., Mezentsev I.V., Meleshkin A.V. Sovremennaya nauka: issledovaniya, idei, rezultaty, tekhnologii — Modern Science: Resear-ches, Ideas, Results, Technologies, 2013, no. 1 (12), pp. 260–264.
[18] Nakoryakov V.E., Tsoi A.N., Mezentsev I.V., Meleshkin A.V. Boiling-up of liquid nitrogen jet in water. Thermophysics and Aeromechanics, 2014, vol. 21, no. 3, pр. 279–284.
[19] Nakoryakov V.E., Tsoy A.N., Mezentsev I.V., Meleshkin A.V. Teplofizika i aero-mekhanika — Thermophysics and Aeromechanics, 2014, no. 3, pp. 293–298.