Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Development of direct systems for emergency evacuation from high-altitude units of launch complexes for integrated launch vehicles: exploratory study

Published: 25.04.2022

Authors: Igritsky V.A.

Published in issue: #4(124)/2022

DOI: 10.18698/2308-6033-2022-4-2173

Category: Aviation and Rocket-Space Engineering | Chapter: Ground Complexes, Launch Equipment, Aircraft Exploitation

When fueled integrated launch vehicles are prepared for a launch, there is an increased risk of fires and explosions due to fuel and oxidizer on board these vehicles. Therefore, it is necessary to ensure emergency evacuation of manned spacecraft crew and assisting personnel in dangerous situations. For vehicle service towers or crew embarkation and evacuation units this is quite a challenge as the spacecraft is at high altitude, especially it is difficult when preparing super heavy-lift launch vehicles. To solve this problem, special evacuation systems of various types are used. A common feature of existing systems for emergency evacuation from high-altitude units is the need to transfer from the main means of evacuation to an armored personnel carrier or to shelter behind the doors of a proteсted accommodation, which reduces the reliability and increases the cost of the system, especially in operation. The paper explores the prerequisites and opportunities for developing crew embarkation and evacuation systems without the use of protected accommodations and transfers, which can potentially reduce the cost and increase the reliability of these systems.


References
[1] Barmin I.V., Neustroev V.N., Lebedeva L.I. Izvestiya RARAN (Proceedings of the Russian Academy of Rocket and Artillery Sciences), 2016, no. 4 (94), pp. 79–86.
[2] Kuritsyn A.A., Yaropolov V.I. Pilotiruemye polety v kosmos — Manned Spaceflight, 2017, no. 4 (25), pp. 54–72.
[3] Plotnikov V.V., Ukrainskiy A.Yu., Skorinov A.A., Dvoryaninov A.A., Ryzhov A.I. Sistema ekstrennoy evakuatsii kosmonavtov pri vozniknovenii avariynoy situatsii vo vremya ikh posadki v kosmicheskiy korabl [The system of emergency evacuation of astronauts in the event of an emergency during their embankment]. Pat. RF, no. 2671439 C1, 2018, bul. no. 31, 11 p.
[4] Mukhachev Yu.S., Polyanskiy V.I., Romanov V.Z. Agregat posadki i evakuatsii kosmonavtov ot kosmicheskogo korablya [Unit for embarkment and evacuation of astronauts from a spacecraft]. Pat. RF, no. 2660180 C1, 2018, bul. no. 19, 8 p.
[5] Tomakov M.V., Tomakov V.I., Kazakova Yu.M., Kislinskiy A.A. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta — Proceedings of Southwest State University, 2014, no. 1, pp. 40-48.
[6] Komashinskiy V.I., Tarantsev A.A., Losev M.A. Morskie intellektualnye tekhnologii — Marine Intellectual Technologies, 2018, no. 1, pp. 215–223.
[7] Schorr A., Robinson K.F., Perry B.A. Payload Accommodations in NASA’s Space Launch System, Block 1 and Beyond. 2018 AIAA SPACE and Astronautics Forum and Exposition, 17–19 September 2018, Orlando, FL. DOI: 10.2514/6.2018-5147.
[8] Qin T., Rong Y., Qin X., Zhang Z. The development characteristics and trends of heavy launch vehicles. Aerospace China, 2018, vol. 19 (4), pp. 29–37.
[9] Daniluk A.Y., Klyushnikov V.Yu., Kuznetsov I.I., Osadchenko A.S. Vestnik NPO im. S.A. Lavochkina (Lavochkin Association journal), 2015, no. 1 (27), pp. 10–18.
[10] Daniluk A.Y., Klyushnikov V.Yu., Kuznetsov I.I., Osadchenko A.S. The past, present, and future of super-heavy launch vehicles for research and exploration of the Moon and Mars. Solar System Research, 2015, vol. 49, pp. 490–499. DOI: 10.1134/S0038094615070047
[11] Spector S. Delineating acceptable risk in the space tourism industry, Tourism Recreation Research, 2020, vol. 45, no. 4, pp. 500–510. DOI: 10.1080/02508281.2020.1747798
[12] Barmin I.V., ed. Tekhnologicheskie obekty nazemnoi infrastruktury raketno-kosmicheskoy tekhniki: inzhenernoe posobie. Kniga 1 [Technological objects of ground infrastructure of rocket and space technology: engineering manual. Book 1]. Moscow, 2005, 416 p.
[13] Krikalev S.K., Saprykin O.A. Pilotiruemye polety v kosmos — Manned Spaceflight, 2016, no. 1 (18), pp. 47–62.
[14] Gubanov B.I. Triumf i tragediya «Energii». Razmyshleniya glavnogo konstruktora. T. 3. «Energiya» — «Buran» [Triumph and tragedy of Energia. Thoughts of the chief designer. Vol. 3. “Energia” — “Buran”]. Nizhny Novgorod, Nizhny Novgorod Institute for Economic Development Publ., 1998.
[15] Trinitrotoluol [Trinitrotoluene]. Bolshaya rossiyskaya entsiklopediya [Great Russian Encyclopedia]. Available at: https://bigenc.ru/chemistry/text/4204059 (accessed January 22, 2022).
[16] Glushko V.P., ed. Kosmonavtika: Entsiklopediya [Cosmonautics: Encyclopedia]. Moscow, Sovetskaya entsiklopediya Publ., 1985, 528 p.
[17] Zheleznyakov A.B., Shlyadinskiy A.G. «Tsar-raketa» N-1. «Lunnaya gonka» SSSR [“Tsar Rocket” N-1. “Moon race” of the USSR]. Moscow, Eksmo, Yauza Publ., 2016, 112 p.
[18] Umanskiy S.P. Rakety-nositeli. Kosmodromy [Launch vehicles. Cosmodromes]. Koptev Yu.N., ed. Moscow, Restart + Publ., 2001, 216 p.
[19] Starbase Tour and Interview with Elon Musk. Everyday Astronaut, 2021. Available at: https://everydayastronaut.com/starbase-tour-and-interview-with-elon-musk/ (accessed January 22, 2022).
[20] First stage fast sheet. Saturn V news reference, 1968. Available at: http://www.apolloexplorer.co.uk/pdf/saturnv/First%20Stage.pdf (accessed January 22, 2022).
[21] Soyuz at the Guiana Space Centre. User’s Manual. Issue 2, Revision 0. March 2012. Arianespace.com, 2012. Available at: https://www.arianespace.com/wp-content/uploads/2015/09/Soyuz-Users-Manual-March-2012.pdf (accessed January 22, 2022).
[22] Aliev V.G. Morskoy start. Kosmos i okean. Raketno-kosmicheskiy kompleks morskogo bazirovaniya. Istoriya proekta. Opyt razrabotki i ekspluatatsii [Sea launch. Space and ocean. Sea-based rocket and space complex. Project history. Development and operation experience]. Moscow, Pero Publ., 2020, 552 p.
[23] Nesterov V.E. Kosmicheskiiy raketny kompleks «Angara». Istoriya sozdaniya. T. 1 [Space rocket complex “Angara”. History of creation. Vol. 1]. Moscow, Remarko Publ., 2018, 472 p.
[24] Space Launch System Core Stage. NASA Facts. Available at: https://www.nasa.gov/sites/default/files/atoms/files/sls_core_stage_fact_sheet_04262021_508.pdf (accessed January 22, 2022).
[25] Novozhilov B.M. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 10. http://dx.doi.org/10.18698/2308-6033-2019-10-1924
[26] Emergency Egress System. NASA. Available at: https://www.nasa.gov/mission_pages/shuttle/launch/emer-egress.html (accessed January 22, 2022).
[27] Ustroystva spasatelnye rukavnye (USR) [Rescue sleeve devices]. MChS Rossii [The Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters]. Available at: https://www.mchs.gov.ru/ministerstvo/o-ministerstve/tehnika/pozharnaya-tehnika/ustroystva-spasatelnye-rukavnye-usr (accessed January 22, 2022).
[28] Pataro L. Scary rides, scary risks. Risk Management, 2007, vol. 54, no. 8, pp. 50–55.
[29] Aktualizatsiya pravil tyagovykh raschetov na promyshlennom zheleznodorozhnom transporte. Metodicheskoe posobie k SP 37.13330.2012 [Updating the rules of traction calculations for industrial railway transport. Methodological guide 37.13330.2012]. Moscow, 2016. Available at: https://www.faufcc.ru/upload/methodical_materials/mp09.pdf (accessed January 22, 2022).
[30] Rabinovich B.A. Bezopasnost cheloveka pri uskoreniyakh. (Biomekhanicheskiy analiz) [Human safety during acceleration. (Biomechanical analysis)]. Moscow, 2006, 208 p.