Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Controlled inertia tensor of a transformable spacecraft

Published: 20.07.2021

Authors: Simonyants R.P., Alekhin N.A., Tarasov V.A.

Published in issue: #7(115)/2021

DOI: 10.18698/2308-6033-2021-7-2095

Category: Aviation and Rocket-Space Engineering | Chapter: Innovation Technologies of Aerospace Engineering

A simplified model of a transformable spacecraft is considered, including a rod-type transformation mechanism with movable weights. The mechanism can be used to adapt the dynamic properties of the spacecraft to the environment or the operating conditions of on-board systems, for example, to counter the moments of external disturbances during attitude control and angular stabilization. By changing the position of the transformation mechanism, the spacecraft inertia tensor can be put in diagonal form, which makes it possible to exclude the force interconnections between the channels and to eliminate the constant component of the gravitational moment. For a simplified model of the transformation mechanism, we establish the analytical dependence of the components of the inertia tensor on the parameters determining the position of the transformation mechanism. It is shown that by adjusting the moving mass, which is 0.5% of the entire spacecraft mass, we obtain the spacecraft configuration that ensures the diagonality of the inertia tensor.

[1] Simonyants R.P. O proyektirovanii transformiruyemoy konstruktsii letatelnogo apparata sovmestno s razrabotkoy sistemy upravleniya [On the design of a transformable aircraft structure combined with the development of a control system]. Aerokosmicheskiye tekhnologii, 2010 — 2012: Sbornik nauchnykh trudov [Aerospace technologies, 2010–2012: Сollection of scientific papers]. Moscow, AO «VPK «NPO mashinostroyeniya», BMSTU Publ., 2012, pp. 52–58.
[2] Simonyants R.P. Metody passivnoy oriyentatsii i stabilizatsii kosmicheskikh apparatov [Methods of passive attitude control and stabilization of spacecraft]. Moscow, BMSTU Publ., 2015, 132 p.
[3] Bezglasnyy S.P, Krasnov M.V, Mukhametzyanova A.A. Trudy MAI (Proceedings of MAI), 2015, no. 82, pp. 2−20. Available at: (accessed January 1, 2021).
[4] Colombo G., Gaposchkin E.M., Grossi M.D., Weiffenbach G.C. Meccanica, 1975, vol. 10, no. 1, pp. 3−20.
[5] Bezglasnyy S.P., Piyakina Ye.Ye. Kosmicheskie issledovaniya — Cosmic Research, 2015, vol. 53, no. 4, pp. 353–359.
[6] Gutnik S.A. Dinamika dvizheniya sputnika otnositel’no tsentra mass s passivnymi sistemami oriyentatsii. Diss. doktor. tekhn. nauk [Dynamics of satellite motion relative to the center of mass with passive attitude control systems. Dr. eng. sc. diss.]. Moscow, 2019, 280 p.
[7] Aslanov V.S., Bezglasnyy S.P. Prikladnaya matematika i mekhanika — Journal of Applied Mathematics and Mechanics, 2012, vol. 76, no. 4, pp. 563−573.
[8] Khiller M., Sagirov P. Dempfirovaniye kolebaniy sputnika izmeneniem raspredeleniya mass. (FRG) [Damping of satellite vibrations by changing the mass distribution. (GDR)]. Sbornik «Upravleniye v kosmose» [Control in space. Collected works]. Vol. 1. Moscow, Nauka Publ., 1972, pp.126−136.
[9] Matveyeva T.V., Belyayev M.Yu. Sposob opredeleniya tenzora inertsii kosmicheskogo apparata [Method for determining the spacecraft inertia tensor]. Patent RF, no. RU 2587663 S2, 2016.
[10] Magnus K. Giroskop. Teoriya i primeneniye [Gyroscope. Theory and application]. Moscow, Mir Publ., 1974, 526 p.
[11] Landau L.D., Lifshits Ye.M. Teoreticheskaya fizika. Tom 1. Mekhanika [Theoretical Physics. Vol. 1. Mechanics]. Moscow, Nauka Publ., 1965, 205 p.
[12] Zubov N.Ye., Lapin A.V., Mikrin Ye.A. Kosmicheskaya tekhnika i tekhnologii — Space Engineering and Technology, 2013, no. 3, pp. 74−81.
[13] Zubov N.Ye., Mikrin Ye.A., Misrikhanov M.SH., Ryabchenko V.N. Izvestiya RAN. Teoriya i sistemy upravleniya — Journal of Computer and Systems Sciences International, 2012, no. 1, pp. 92–108.
[14] Mashtakov Ya.V., Tkachev S.S. Preprinty IPM im. M.V. Keldysha — Keldysh Institute Preprints, 2016, no. 18, 31 p. DOI: 10.20948/prepr-2016-18
[15] Atamasov V.D. Sistemy ispolnitel’nykh organov kosmicheskogo apparata «Yantar» [Systems of effectors of the Yantar spacecraft]. St. Petersburg, Baltic STU Publ., 2013, 135 p.