Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Mathematical simulation of the cyclic mode of operation for a liquid propellant spacecraft rocket engine

Published: 11.10.2018

Authors: Ulybyshev S.Yu.

Published in issue: #10(82)/2018

DOI: 10.18698/2308-6033-2018-10-1813

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The paper describes a mathematical model concerning operation of a monopropellant rocket engine used in its cyclic mode of operation that takes into account the stages of the engine entering the steady-state operation mode and thrust decay. We present required test firing procedure and results for two test engine samples enabling us to obtain their cyclic mode operation characteristics. We describe the steps to derive approximation factors for test firing data so that an autonomous computation routine may be implemented on board, calculating engine thrust and specific impulse as functions of current fuel pressure in the tank and work cycle duration. We estimated the accuracy of data approximation and stated the guidelines for how to obtain and use test firing data and determine how much data is required in order to ensure highly accurate spacecraft manoeuvring both for continuous-duty and pulse-like engine operation modes


References
[1] Beshenev Yu.A., Buldashev S.A., Dolgikh G.A., Kazankin F.A., Kiseleva I.B., Larin E.G., Murkin V.A., Semkin E.V. Parametricheskiy ryad ZhRDMT na shtatnykh komponentakh topliva razrabotki FGUP NIIMASh [Parameter range of liquid propellant rocket engines using regular fuel components developed by Research and Development Institute of Mechanical Engineering JSC]. Sb. materialov konf. Aktualnye voprosy proektirovaniya avtomaticheskikh kosmicheskikh apparatov dlya fundamentalnykh i prikladnykh issledovaniy [Proc. of the Conference on Topical issues of automated spacecraft design for theoretical and applied research]. Khimki, Lavochkin Research and Production Association Publ., 2015, pp. 273–278.
[2] Murashko V.M., Kozubskiy K.N., Vertakov N.M., Koryakin A.I. Vestnik NPO im. S.A. Lavochkina — Vestnik NPO im. S.A. Lavochkina (Herald of the Lavochkin Research and Production Association), 2015, no. 3 (29), pp. 32–36.
[3] Glushkov A.V., Ulybyshev S.Yu. Upravlenie mnogosoplovoy dvigatelnoy ustanovkoy kosmicheskogo apparata s ogranicheniem nakopleniya kineticheskogo momenta [Controlling a multi-nozzle spacecraft engine system featuring limited angular momentum accumulation]. Sb. materialov konf. Aktualnye voprosy proektirovaniya avtomaticheskikh kosmicheskikh apparatov dlya fundamentalnykh i prikladnykh issledovaniy [Proc. of the Conference on Topical issues of automated spacecraft design for theoretical and applied research]. Khimki, Lavochkin Research and Production Association Publ., 2015, pp. 316–322.
[4] Gavrilenko T.S., Glushkov A.V., Ulybyshev S.Yu. Patent RU2610793, IPC B64G 1/26. Sposob upravleniya kosmicheskim apparatom, snabzhennym mnogosoplovoy dvigatelnoy ustanovkoy [Guidance method for spacecraft equipped with a multi-nozzle engine system]. Patent applicant and owner: Central Scientific Research Institute of Chemistry and Mechanics. No. 2016100592/11; applied January 13, 2016; published February 15, 2017. Bul. no. 5, 18 p.
[5] Vorobev A. Inzhener (Engineer), 2010, no. 2, pp. 28–29.
[6] Ryzhkov V.V., Ivashin Yu.S., Ivashin A.Yu., Petrunin E.Yu. Avtomatizirovannaya sistema upravleniya i informatsionnogo obespecheniya issledovaniy zhidkostnykh raketnykh dvigateley maloy tyagi [Automatic control and information support system for investigating low-thrust liquid propellant rocket engines]. Materialy dokladov mezhdunarodnoy nauchno-tekhnicheskoy konferentsii Problemy i perspektivy razvitiya dvigatelestroeniya [Proc. of the International Scientific and Engineering Conference on Problems and prospects of rocket engine development]. Vol. 2. Korolev Samara State Aerospace University Publ., 2003, pp. 38–44.
[7] Gasparov M.S., Kryuchkov A.N., Prokofev A.B., Shakhmatov E.V. Dinamicheskie izmereniya i obrabotka eksperimentalnykh dannykh pri ispytaniyakh gidrosistem [Dynamic measurements and experimental data processing during hydraulic system testing]. Samara, Korolev Samara State Aerospace University Publ., 2006, 127 p.
[8] Ageenko Yu.I. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2009, no. 4 (57), pp. 170–176.
[9] Vorobev A.G. “Vestnik Moskovskogo Aviatsionnogo Instituta” Journal (Bulletin of Moscow Aviation Institute), 2007, vol. 4, no. 4, pp. 42–49.
[10] Vorobev A.G., Borovik I.N., Lizunevich M.M., Sokol S.A., Gurkin N.K., Kazennov I.S. “Vestnik Moskovskogo Aviatsionnogo Instituta” Journal (Bulletin of Moscow Aviation Institute), 2010, vol. 17, no. 1, pp. 97–100.
[11] Belyaev E.N., Chvanov V.K., Chervakov V.V. Matematicheskoe modelirovanie rabochego protsessa zhidkostnykh raketnykh dvigateley [Mathematical simulation of liquid rocket engine work cycles]. Moscow, MAI Publ., 1999.
[12] Barbotko L.N., Martirosov D.S. Korrektsiya matematicheskoy modeli ZhRD po rezultatam ognevogo ispytaniya dlya zadach diagnostiki [Correcting a mathematical model describing a liquid propellant rocket engine based on test firing results for solving diagnostics problems]. Trudy NPO «Energomash» [Proc. of NPO Energomash named after Academician V.P. Glushko]. 2003, no. 21, pp. 91–104.
[13] Bukanov V.T., Kamenskiy S.S., Martirosov D.S. Primenenie raschetno-eksperimentalnoy modeli dlya prognoza parametrov rabochikh protsessov ZhRD v tsikle povtornykh ognevykh ispytaniy [Using a combined computational and experimental model to predict liquid propellant rocket engine work cycle parameters in the repeated test firing cycle]. Trudy NPO «Energomash» [Proc. of NPO Energomash named after Academician V.P. Glushko]. 2015, no. 32 (1), pp. 91–99.
[14] Partola I.S. Journal «Trudy MAI» (Proc. of Moscow Aviation Institute), 2011, no. 46, pp. 17–21.
[15] Advanced Propulsion Systems and Technologies, Today to 2020. Bruno C., Accettura A.G., eds. Vol. 223: Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics, Virginia, 2008, 489 p.
[16] Huzel D.K. Modern Engineering for Design of Liquid-Propellant Rocket Engines. American Institute of Aeronautics and Astronautics, Virginia, 1992, vol. 147, 431 pp.
[17] Yagodnikov D.A., Iryanov N.Ya. Raketnye dvigatelnye ustanovki. Terminy i opredeleniya [Rocket engines. Terms and definitions]. Moscow, BMSTU Publ., 2012, 87 p.
[18] GOST R 53374—2009. Dvigateli raketnye zhidkostnye. Obshchie trebovaniya k izgotovleniyu i kontrolyu kachestva pri postavkakh v ekspluatatsiyu [State Standard R 53374—2009. Liquid propellant rocket engines. General technical requirements for production and quality inspection during supply for use]. Moscow, Standartinform Publ., 2009, 27 p.
[19] GOST R 56099—2014. Dvigateli raketnye zhidkostnye. Metodika utyazhelennykh ispytaniy [State Standard R 56099-2014. Liquid propellant rocket engines. Forced test methods]. Moscow, Standartinform Publ., 2014, 23 p.