Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Experimental study of thermal processes in gaseous methane at its natural convection

Published: 18.05.2021

Authors: Altunin V.A., Altunin K.V., Abdullin M.R., Chigarev M.R., Aliev I.N., Yanovskaya M.L.

Published in issue: #5(113)/2021

DOI: 10.18698/2308-6033-2021-5-2080

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The paper discovers the reasons for the transfer of single-use or reusable ground, air, aerospace, and space-based engines and power plants from liquid hydrocarbon fuels and coolers to gaseous fuels, or rather, to liquefied natural gas methane. The study gives specific examples of creating a new technology and using methane fuel and fuel in the existing units; lists the classes of methane engines and power plants, among which the main ones being piston engines and internal combustion power plants, air-jet engines and power plants, liquid propellant rocket engines and power plants. Findings of research show that it is necessary to experimentally study gaseous methane, so that it could be effectively used in advanced single-use or reusable ground, air, aerospace and space-based engines and power plants, and their features should be taken into account when designing and developing new technologies. The study introduces the results of the experimental study of thermal processes in gaseous methane during its natural convection, describes the experimental base in detail, as well as the procedure for conducting experiments, and develops methods for calculating the heat transfer coefficient to gaseous methane relying on the research results.


References
[1] Gaponenko O.V. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 6 (1). DOI: 10.18698/2308-6033-2019-6-1893
[2] NASA Strategic Technology Investment Plan. NASA, Office of the Chief Technologist, 2017. Available at: https://www.nasa.gov/sites/default/files/atoms/files/2017-8-1_stip_final-508ed.pdf (accessed May 24, 2018).
[3] Altunin V.A., Altunin K.V., Abdullin M.R., Yanovskaya M.L. Sozdanie eksperimentalnoy bazy dlya rascheta dvigateley i energoustanovok nazemnogo, vozdushnogo, aerokosmicheskogo i kosmicheskogo bazirovaniya na gazoobraznom metane [Creation of an experimental base for calculating engines and power plants of ground, air, aerospace and space-based on gaseous methane]. Tr. 53 Nauchnykh chteniy, posvyashchennykh pamyati K.E. Tsiolkovskogo. Kaluga, 18–19 sentyabria 2018 g., RAN, RAKTs, Kazan [Proceedings of the 53rd Scientific Readings dedicated to the memory of K.E. Tsiolkovsky. Kaluga, September 18–19, 2018, RAS, RACT]. Kazan, Kazan University Publ., 2019, pp. 146–159.
[4] Altunin V.A., Altunin K.V., Aliev I.N., Abdullin M.R., Davlatov N.B., Platonov E.N., Yanovskaya M.L. Teplovye protsessy v tekhnike — Thermal Processes in Engineering, 2019, vol. 11, no. 10, pp. 453–479.
[5] Altunin V.A., Altunin K.V., Abdullin M.R., Yanovskaya M.L. Analiz rezultatov eksperimentalnykh issledovaniy gazoobraznogo metana v usloviyakh ego estestvennoy konvektsii [Analysis of the results of experimental studies of gaseous methane under conditions of its natural convection]. Mater. 54 nauchnykh chteniy pamyati K.E. Tsiolkovskogo. Kaluga, GMIK, 17–19 sentyabria 2019 g., RAN, RAKTs. [Proceedings of the 54th Scientific Readings in memory of K.E. Tsiolkovsky. Kaluga, State Museum of the History of Cosmonautics named after K.E. Tsiolkovsky, Kaluga, September 17–19, 2019, RAS, RACT]. Kaluga, AKF Polytop Publ., 2019, part 1, pp. 340–342.
[6] Altunin V.A., Abdullin M.R., Davlatov N.B., Shigapov R.R., Yanovskaya M.L. Issledovanie vozmozhnosti intensifikatsii teplootdachi k zhidkim i gazoobraznym uglevodorodnym i azotosoderzhashchim goryuchim i okhladiteliam [Investigation of the possibility of intensifying heat transfer to liquid and gaseous hydrocarbon and nitrogen-containing fuels and coolers]. Sb. tez. dokl. Vserossiyskoy nauchno-tekhnicheskoy konferentsii molodykh uchenykh i spetsialistov «Aviatsionnye dvigateli i silovye ustanovki» FGUP «TsIAM im. P.I. Baranova», 28–30 maia 2019 g., Moskva [Coll. abstracts and reports of the All-Russian Scientific and Technical Conference of Young Scientists and Specialists “Aircraft Engines and Power Plants”, FSUE CIAM, May 28–30, 2019, Moscow]. Moscow, CIAM Publ., 2019, pp. 316–317.
[7] Chernoschekov L.N. AGZK+AT (Automotive refueling complex + alternative fuel), 2010, no. 2 (50), pp. 58–61.
[8] Telegina E., Cholovskiy A. Mirovaya energetika (The world energy), 2006, no. 4 (28), pp. 75–77.
[9] Glushich D.V., Gorbachev A.S., Baymukhametov S.K., Ponomarev A.A., Simin’ko I.A., Kapralov D.A. Turbiny i dizeli — Turbines & Diesels, 2012, no. 1, pp. 44–47.
[10] Sobyanin V.A. Rossiyskiy khimicheskiy zhurnal (Russian Journal of General Chemistry), 2003, vol. 47, no. 6, pp. 62–70.
[11] Rishes K. Nauka i tekhnika (Science and technology), 2018, no. 1 (140), pp. 10–12.
[12] Bakulin V.N., Breschenko E.M., Dubovkin N.F., Favorskiy O.N. Gazovye topliva i ikh komponenty. Svoystva, poluchenie, primenenie, ekologiya [Gas fuels and their components. Properties, production, application, ecology]. Moscow, MPEI Publ., 2009, 614 p.
[13] Belov E.A., Bogushev V.Yu., Klepikov I.A., Smirnov A.M. Rezultaty eksperimentalnykh rabot v NPO «Energomash» po osvoeniyu metana kak komponenta topliva dlya ZhRD [The results of experimental work at NPO Energomash on the development of methane as a fuel component for a rocket engine]. In: Trudy NPO «Energomash» im. akademika V.P. Glushko [Proceedings of NPO Energomash]. Korolyov, 2000, vol. XVIII, pp. 86–100.
[14] Gorokhov V.D., Kunavin S.P. Raboty KBKhA po sozdaniyu perspektivnykh ZhRD na komponentakh topliva kislorod-metan [CADB’s work on the creation of advanced liquid-propellant rocket engines using oxygen-methane fuel components]. In: Nauchno-tekhnicheskiy sbornik KB Khimavtomatiki [Scientific and technical collected papers of Chemical Automatics Design Bureau]. Voronezh, IPF Publ., 2001, pp. 96–101.
[15] Yagodnikov D.A., Antonov Yu.V., Vorozheeva O.A., Masalskiy N.L., Novi-kov A.O., Chertkov K.O. Inzhenerny vestnik — Engineering Bulletin, 2014, no. 10, pp. 19–39.
[16] Kovateva Нu.S., Vorobev A.G., Borovik I.N., Khokhlov A.N., Kazennov I.S. Vestnik MAI — Aerospace MAI Journal, 2011, vol. 18, no. 3, pp. 45–54.
[17] Novikov A.V., Yagodnikov D.A., Burkaltsev V.A., Lapitskiy V.I. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2004, spec. iss., pp. 8–17.
[18] Kochanov A.V., Klimenko A.G. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2006, no. 3, pp. 15–30.
[19] Vorozheeva O.A., Yagodnikov D.A. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2013, no. 7, pp. 11–20.
[20] Snigerev B.A., Tukmakov A.L., Tonkonog V.G. Issledovanie vskipayuschego techeniya zhidkogo metana v sople Lavalya [Study of the boiling flow of liquid methane in a Laval nozzle]. In: Innovatsionnye mashinostroitelnye tekhnologii, oborudovanie i materialy–2015: materialy mezhdunar. nauch.-tekhn. konf. “IMTOM-2015”, 2–4 dek. 2015, ch. 1 [Innovative Engineering Technologies, Equipment and Materials–2015: Materials of the International Scientific and Technical conf. “IMTOM-2015”, 2–4 December, 2015, part 1]. Kazan, Foliant Publ., 2015, pp. 180–183.
[21] Sharipov Sh.G., Usmanov R.R., Romanenkov P.G. Gazovaya promyshlennost — Gas Industry of Russia, 2018, spec. iss. 3 (773), pp. 134–136.
[22] Zagoruchenko V.A., Zhuravlev A.M. Teplofizicheskiye svoystva gazoobraznogo i zhidkogo metana [Thermophysical properties of gaseous and liquid methane]. Moscow, Publishing House of the Committee of Standards, Measures and Measuring Instruments under the Council of Ministers of the USSR, 1969, 237 p.
[23] Sychev V.V., Vasserman A.A. Termodinamicheskiye svoystva metana [Thermodynamic properties of methane]. Moscow, Nauka Publ., 1979, pp. 8–36.
[24] Petukhov B.S. Voprosy teploobmena [Heat transfer issues]. Moscow, Nauka Publ., 1987, 280 p.
[25] Afshar R., Kogli A., Saksen S. Teploperedacha — Journal of heat transfer, 1980, vol. 102, no. 1, pp. 186–191.
[26] Altunin K.V., Altunin V.A., Gortysho Ju.F., Dresvjannikov F.N., Gureev V.M., Tarasevich S.E., Popov I.A., Gubin S.D. Method to prevent formation and growth of carbonaceous deposits on walls of heat exchange channels. Patent for invention no. RU 2482413. Publ. 2013, bull. no. 14, 6 p.
[27] Altunin V.A., Altunin K.V., Platonov E.N., Obukhova L.A., Yanovskaya M.L. Osobennosti teplovykh protsessov v zhidkikh uglevodorodnykh goryuchikh i okhladitelyakh v sushchestvuyushchikh i perspektivnykh dvigatelyakh i energoustanovkakh nazemnogo, vozdushnogo, aerokosmicheskogo i kosmicheskogo primeneniya [Features of thermal processes in liquid hydrocarbon fuels and coolants in existing and future engines and power plants for ground, air, aerospace and space applications]. In: Sb. tez. dokl. Vserossiyskoy nauchno-tekhnicheskoy konferentsii «Aviadvigateli XXI veka», posvyashchennoy 85-letiyu TSIAM im. P.I. Baranova. Moskva, 24–27 noyabrya 2015, TSIAM [Sat. thesis. report All-Russian scientific and technical conference “Aircraft engines of the XXI century”, dedicated to the 85th anniversary of TsIAM named after P.I. Baranov. Moscow, November 24–27, 2015, CIAM]. Moscow, TSIAM Publ., 2015, pp. 969–971.