Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Parametric computational study of particle trajectory deviation probabilistic nature influencing the unevenness of their localization in the model tract

Published: 30.08.2021

Authors: Voronetskiy A.V., Arefiev K.Yu., Abramov M.A.

Published in issue: #8(116)/2021

DOI: 10.18698/2308-6033-2021-8-2107

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The purpose of this research was to investigate the spatial structure of a two-phase flow in a supersonic model channel of circular cross-section with a diameter of the cylindrical part of ~10 mm. For modeling, we used the Euler-Lagrange approach in combination with a probabilistic estimate of the dispersed particles deviation from their base trajectory. Chromium-nickel alloy particles with a diameter of 15 to 40 μm move in the channel in a special way, which was considered in the paper. Furthermore, we analyzed how the nature of the distribution function of the particle’s root-mean-square deviation from its base trajectory influences the quality of mixing of the dispersed phase with the flow and the number of particles interacting with the walls of the flow path.

[1] Van Wie D., D’Alessio S., White M. Hypersonic Airbreathing Propulsion. Johns Hopkins APL Technical Digest, 2005, vol. 26, no. 4, pp. 30–37.
[2] Aleksandrov V.N., Bytskevich V.M., Verkholomov V.K., et al. Integralnye pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh. Osnovy teorii i rascheta [Integral solid-fuel ramjet engines. Fundamentals of theory and calculation]. L.S. Yanovskiy, ed. Moscow, Akademkniga Publ., 2006, 343 p.
[3] Haddad A., Natan B., Arieli R. The performance of a boron-loaded gel-fuel ramjet. Progress in Propulsion Physics, 2011, no. 2, pp. 499–518.
[4] Yagodnikov D.A., Lapitskiy V.I., Sukhov A.V., Tomak V.I. Inzhenerny vestnik — Instrument Engineering, 2014, no. 11. Available at: (accessed May 15, 2017).
[5] Voronetskiy A.V. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie — Science and Education, 2016, no. 1. Available at:
[6] Arefyev K.Yu., Voronetskiy A.V., Prokhorov A.N., Yanovskiy L.S. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2017, no. 3, pp. 42–52.
[7] Arefyev K.Yu., Zakharov V.S., Serpinskiy O.S., Fedotova K.V. Vliyanie sposoba podachi gazogeneratornogo gaza na effektivnost smesheniya v kanalakh so sverkhzvukovym potokom [Influence of the gas generator gas supply method on the mixing efficiency in channels with supersonic flow]. Aktualnye problemy rossiyskoy kosmonavtiki: Materialy XXXVIII Akademicheskikh chteniy po kosmonavtike [Actual problems of Russian cosmonautics: Materials of XXXVIII Academic readings on cosmonautics]. Moscow, RAS Commission, 2014, pp. 151–152.
[8] Arefyev K.Yu., Prokhorov A.N., Savelev A.S. Teplofizika i aeromekhanika — Thermophysics and Aeromechanics, 2018, no. 1, pp. 57–69.
[9] Voronetskiy A.V., Suchkov S.A., Filimonov L.A. Teplofizika i aeromekhanika — Thermophysics and Aeromechanics, 2007, vol. 14, no. 2, pp. 209–218.
[10] Voronetskiy A.V., Smolyaga V.I., Arefyev K.Yu., Filimonov L.A., Abramov M.A. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2018, no. 4, pp. 16–36.
[11] Voronetskiy A.V., Arefyev K.Yu., Abramov М.А. Teplofizika i aeromekhanika — Thermophysics and Aeromechanics, 2020, no. 6, pp. 833–851.
[12] Arefyev K.Yu., Abramov M.A., Voronetskiy A.V., Son E.E. Teplofizika vysokikh temperature — High Temperature, 2021, vol. 59, no. 2, pp. 46–61.
[13] Langtry R.B., Menter F.R. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal, 2009, vol. 47 (12), pp. 2894–2906.