Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Analysis of promising spacecraft solar cell designs

Published: 21.03.2022

Authors: Ryabtseva M.V., Lebedev A.A., Naumova A.A., Bolotin A.M., Vagapova N.T., Cherenkov P.G.

Published in issue: #3(123)/2022

DOI: 10.18698/2308-6033-2022-3-2162

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The paper presents results of computing power over initial volume, power over mass, specific mass, and other fundamental absolute and relative performance characteristics for various types of existing and promising solar batteries to be used in spacecraft. We describe photosensitive electric generating parts of solar batteries and propose to classify them according to the following features: type of photovoltaic converters used; the way that photovoltaic converters are protected from outer space factors; component switching implementation, etc. We consider different framework types, such as rigid and framed with flexible skin. We show that specific characteristics of domestic stringed frames (developed by JSC ISS — Reshetnev Company) are comparable to those of solid (rigid) frames produced by foreign companies. Moreover, the parameters under consideration as found in experimental integral structures or honeycomb frames (developed in Keldysh Research Centre), which have a low structural depth, exceed those by several times. The paper shows that solar batteries featuring photosensitive electric generating parts utilising four-stage photovoltaic converters based on AIIIBV materials boast the best specific power characteristics over mass and initial volume for any framework type, as well as the least degradation due to radiation exposure in the geostationary orbit. In the range of photosensitive electric generating parts featuring various three-stage photovoltaic converters, those that use standard 80 × 80 mm photovoltaic converters achieve the highest performance in terms of these parameters for stringed and honeycomb frames. JSC Research Production Enterprise Kvant supplies this type to the domestic market.


References
[1] Slyschenko E.V., Naumova A.A., Lebedev A.A., et al. Sibirskiy zhurnal nauki i tekhnologiy — The Siberian Aerospace Journal, 2018, vol. 19, no. 2, pp. 308–324.
[2] Naumova A.A., Lebedev A.A., Vagapova N.T., Kagan M.B., Sineva M.V. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2020, iss. 8. http://dx.doi.org/10.18698/2308-6033-2020-8-2003
[3] Baybakova N.N., Gatsenko L.S., Letin V.A., et al. Sposob izgotovleniya podlozhki solnechnoy batarei [Method for solar cell substrate manufacturing]. Patent RU 2068212, 1996, bul. no. 1, 7 p.
[4] Kuzoro V.I., Mironovich V.V., Shamova N.A., et al. Podlozhka paneli solnechnoy batarei i sposob ee izgotovleniya [Solar cell panel substrate and a method for manufacturing it]. Patent RU 2449226, 2012, bul. no. 12, 7 p.
[5] Tumanov A.V., Zelentsov V.V., Scheglov G.A. Osnovy komponovki bortovogo oborudovaniya kosmicheskikh apparatov [Layout fundamentals for on-board spacecraft equipment]. 3rd ed. Moscow, BMSTU Publ., 2018, 572 p.
[6] Bilalov B.A., Sarkarov R.N., Safaraliev G.K. Solnechny modul [Solar module]. Patent RU 2468305, 2012, bul. no. 33, 5 p.
[7] Kozhevnikova L.A. Solnechnye elementy i batarei kosmicheskogo primeneniya [Solar cells and batteries for space applications]. Reshetnvskie chteniya [Reshetnev readings], 2018, vol. 1, pp. 126–127.
[8] Guter W., Dunzer F., Ebel L., Hillerich K., Köstler W., Kubera T., et al. Space solar cells — 3G30 and next generation radiation hard products. 11th European Space Power Conference. E3S Web of Conferences, 2017, vol. 16. https://doi.org/10.1051/e3sconf/20171603005
[9] Bogushevskaya V.A., Zhaknin B.V., Zayats O.V., Maslyakov Ya.N., Matsak I.S., Nikonov A.A., Obrucheva E.V., Tugaenko V.Yu. Izvestiya RAN. Energetika — Thermal Engineering, 2012, no. 2, pp. 10–17.
[10] Naumova A.A., Lebedev A.A., Milovanov A.F., et al. Method for determining the balance of optical and ohmic losses for modifying the contact grid of modern solar cells based on InGaP/InGaAs/Ge heterostructures. AIP Conference Proceedings, 2021, vol. 2318, Art. no. 040010. https://doi.org/10.1063/5.0036184
[11] Sineva M.V., Voevodkin G.S., Vagapova N.T., Kagan M.B. Ways optimization of the electrical characteristics of multi-junction solar cells for space application. AIP Conference Proceedings, 2021, vol. 2318, Art. no. 040009. https://doi.org/10.1063/5.0035982
[12] Voyevodkin G.S., Sineva M.V., Vagapova N.T. Sposob vosstanovleniya kharakteristik solnechnykh elementov kosmicheskogo naznacheniya posle sroka aktivnogo sushchestvovaniya [A method of restoring the characteristics of space solar cells after a period of active use]. XLIV Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S.P. Koroleva i drugikh vydayuschikhsya otechestvennykh uchenykh pionerov osvoeniya kosmicheskogo prostranstva [14th Academic readings on cosmonautics in memory of S.P. Korolev, Academician, and other distinguished Russian scientists, space exploration pioneers]. Moscow, BMSTU Publ., 2020, vol. 1, pp. 245–247.
[13] Murphy D.M. The Scarlet Solar Array: Technology Validation and Flight Results. Deep Space 1. Technology Validation Report, 36 p. Available at: https://pdssbn.astro.umd.edu/holdings/ds1-c-micas-3-rdr-visccd-borrelly-v1.0/document/doc_Apr04/int_reports/Scarlet_Integrated_Report.pdf
[14] Semenov A.V. Tekhnologiya tonkoplenochnykh solnechnykh moduley bolshoy ploshchadi na osnove amorfnogo i mikrokristallicheskogo kremniya. Diss. kand. tekhn. nauk [Technology of large thin-film solar modules based on amorphous and microcrystalline silicon. Cand. eng. sc. diss.]. Saint Petersburg, ETU Publ., 2015, 149 p.
[15] Afanasyev V.P., Terukov E.I. Izvestiya vysshikh uchebnykh zavedeniy Rossii. Radioelektronika — Journal of the Russian Universities. Radioelectronics, 2016, no. 2. pp. 106–113.
[16] Yastrebova N.V. High-Efficiency Multi-Junction Solar Cells: Current Status and Future Potential. University of Ottawa, 2007. Available at: http://sunlab.site.uottawa.ca/pdf/whitepapers/HiEfficMjSc-CurrStatus&FuturePotential.pdf
[17] Emelyanov V.M., Kalyuzhny N.A. et al. Fizika i tekhnika poluprovodnikov — Semiconductors, 2010, vol. 44, no. 12, pp. 1649–1654.
[18] Vagapova N.T., Lebedev A.A., Lednev A.M. Napravleniya uluchsheniya energomassovykh kharakteristik solnechnykh elementov kosmicheskogo naznacheniya A3V5 [Directions for improving the power and mass properties of III-V solar cells for space applications]. Tezisy dokladov XX Nauchno-tekhnicheskoy konferentsii molodykh uchenykh i spetsialistov OAO RKK Energiya im. S.P. Koroleva [Proc. 20th Scientific and Technical Conference of young scientists and specialists, S.P. Korolev Rocket and Space Corporation Energia]. Korolev, 2014, 707 p.
[19] Space solar cells. CESI Shaping a Better Energy Future. Available at: https://www.cesi.it/space-solar-cells/
[20] Naumova A.A., Lebedev A.A., Vagapova N.T., et al. Optimizatsiya konstruktsii fotopreobrazovatelya dlya uvelicheniya udelnykh kharakteristik solnechnykh batarey kosmicheskikh apparatov [Optimising photovoltaic converter design to increase specific characteristics of spacecraft solar cells]. Elektronnye i elektromekhanicheskie sistemy i ustroystva: XX nauch.tekhn. konf. [Electronic and electromechanical systems and devices: 20th scientific and technical conference]. Tomsk, JSC Scientific & Industrial Centre Polyus, 2020, p. 8.
[21] Strobl G.F.X., Dietrich R., Hilgarth J., et al. Evolution of fully European triple GaAs solar cell. Proc. Seventh European Space Power Conference, 2005 (ESA SP-589, May 2005). Available at: http://www.azurspace.com/images/pdfs/Download%20PDF_9.pdf
[22] Vagapova N.T., Naumova A.A., Lebedev A.A., et al. Sposob izgotovleniya fotopreobrazovatelya [Photovoltaic converter production method]. Patent RU 2730050, 2020, bul. no. 23, 8 p.
[23] Ho F., Yeh M.Y., Chu Ch.-L., Iles P.A. Solar cell having an integral monolithically grown bypass diode. Patent US 2005/0183765A1, 2005.
[24] Basovskiy A.A., et al. Shuntiruyushchie diody dlya kaskadnykh fotopreobrazovateley na osnove soedineniy A3B5 [Shunt diodes for cascaded photovoltaic converters based on AIIIBV compounds]. Trudy Vserossiyskoy nauchno-tekhnicheskoy konferentsii Aktualnye problemy raketno-kosmicheskogo priborostroeniya i informatsionnykh tekhnologiy [Proc. of the Russian Scientific and Technical Conference Actual problems of aerospace instrumentation and information technology]. Moscow, Litres, 2018, p. 357.
[25] Azur Space Solar Power GmbH. Available at: http://www.azurspace.com/index.php/en/
[26] Ablaev G.M., Abramov A.S., Nyapshaev I.A., et al. Fizika i tekhnika poluprovodnikov — Semiconductors, 2015, vol. 49, no. 5, pp. 693–696.
[27] Putyato M.A., Valisheva N.A., Petrushkov M.O., et al. Zhurnal tekhnicheskoy fiziki — Technical Physics, 2019, vol. 89, no. 7, pp. 1071–1078.
[28] Bitkov V.A., Khvostikov V.A., Polyanskov Yu.N. Solnechnaya batareya [Solar panel]. Patent RU 2293398, 2007, bul. no. 4, 9 p.
[29] Nadorov V.P., Kagan M.B., Ivanov V.F., et al. Gibkiy modul solnechnoy batarei [Flexible solar panel module]. Patent RU 2 234 166, 2004, bul. no. 36, 7 p.
[30] Kataev Yu.P. Konstruktorsko-tekhnologicheskaya razrabotka izgotovleniya tipovogo ultralegkogo karkasa paneley solnechnykh batarey. Diss. kand. tekhn. nauk [Design and development for manufacturing standardised ultra-light solar cell framework. Cand. eng. sc. diss.]. Kazan, 2018, 126 p.
[31] Dvirnyy V.V., Eremenko N.V., Dvirnyy G.V. Sibirskiy zhurnal nauki i tekhnologiy — The Siberian Aerospace Journal, 2015, vol. 16, no. 3, pp. 658–663.
[32] Losev N.N., Golovkov V.V., Kindyakov D.G., et al. Kosmicheskie apparaty i tekhnologii — Spacecraft and Technologies, 2018, no. 3, pp. 175–179.
[33] Zaslavskiy G.S., Zakhvatkin M.V., Stepanyants V.A., et al. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2014, vol. 74, no. 1, pp. 15–29.
[34] Boyarchuk A.A., et al. Astronomicalheskiy zhurnal — Astronomy Reports, 2016, vol. 93, no. 1, p. 3. DOI: 10.7868/S0004629916010011
[35] Volkov M.V., Anufrienko V.E., Kuznetsov A.D. Karkas s trubami treugolnogo secheniya i metodika optimizatsii geometricheskikh razmerov izogridnykh konstruktsiy, vypolnennykh iz kompozitsionnykh materialov [Frame featuring triangular cross-section pipes and a method for optimizing the dimensions of composite isogrid structures]. Sbornik materialov Vserossiyskogo molodezhnogo konkursa nauchnotekhnicheskikh rabot Orbita molodezhi [Proc. of the Russian youth competition of scientific and technical works Youth Orbit]. St. Petersburg, 2019, pp. 253–260.
[36] Kagan M.B., Zhalnin B.V., Vagapova N.T., et al. Uluchshenie energomassovykh kharakteristik geteroperekhodnykh trekhkaskadnykh fotopreobrazovateley kosmicheskogo naznacheniya [Improving power and mass properties of three-stage heterojunction photovoltaic converters for space appications]. Elektronnye i elektromekhanicheskie sistemy i ustroystva: sbornik nauchnykh trudov [Electronic and electromechanical systems and devices: proc.]. Tomsk, TPU Publ., 2016, pp. 411–416.
[37] Drondin A.V., Zernov O.D., Yanchur S.V. Sposob izgotovleniya yacheistogo sotovogo zapolnitelya iz kompozitsionnykh materialov [A method of making porous honeycomb aggregate from composite materials]. Patent RU 2623781, 2017, bulletin no. 19, 7 p.
[38] Ardashov A.A., Silantyev S.B., Fominov I.V. Model mass dlya obosnovaniya oblika malogo kosmicheskogo apparata [Mass model for establishing the shape of small spacecraft]. Trudy Voenno-kosmicheskoy akademii im. A.F. Mozhayskogo [Proc. of the Mozhaisky Military Space Academy], 2013, no. 640, pp. 26–33.
[39] Salosina M.O. Kosmicheskaya tekhnika i tekhnologii — Space Engineering and Technology, 2018, no. 3, pp. 32–41.
[40] Lopatin A.V., Nesterov V.A., Shumkova L.V. Model anizogridnogo kompozitnogo setchatogo karkasa solnechnoy batarei kosmicheskogo apparata [Model of anisogrid composite mesh frame for a spacecraft solar cell]. Reshetnvskie chteniya [Reshetnev readings], 2010, vol. 1, no. 14, pp. 70–72.
[41] Gibadulin N.N., Chekhovich V.N., Nabiullin F.H., et al. Sposob montazha fotopreobrazovateley [Method for photovoltaic converter mounting] Inventor’s certificate no. 272989A1 USSR, 1970, bul. no. 23, 2 p.
[42] Gibadulin N.N., Daletsky G.S., Ivanov V.F., et al. Solnechnaya batareya [Solar cell]. Inventor’s certificate no. 562155 USSR, 1995, 5 p.
[43] Gaydar M.I., Ivanov V.F., Kagan M.B. Panel solnechnoy batarei [Solar cell panel]. Patent RU 2332750, 2007, bul. no. 24, 7 p.
[44] Berkal R.I., Bitkov V.A. Solnechnaya batareya [Solar cell]. Patent RU 2297076, 2007, bul. no. 10, 7 p.
[45] Baltyanskiy G.A., Bas-Dubov S.Sh., Gibadulin N.N., et al. Solnechnaya batareya [Solar cell]. Patent USSR 206734, 1995, bul. no. 1, 4 p.
[46] Bitkin V.E., Denisov A.V., Nazarov E.V., et al. Konstruktsiya karkasov solnechnykh batarey iz ugleplastika i sposob izgotovleniya karkasa [Carbon fibre solar cell frame design and a method to manufacture those frames]. Patent RU 2654882, 2018, bul. no. 15, 7 p.