Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Various cooling systems for advanced gas turbine jets: efficiency study

Published: 15.08.2022

Authors: Malinovskiy I.M., Nesterenko V.G., Starodumov A.V., Andreev A.M.

Published in issue: #8(128)/2022

DOI: 10.18698/2308-6033-2022-8-2203

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The paper focuses on foreign and Russian aviation bypass turbojets with an afterburner, studies the design of their turbine cooling systems, and introduces the research findings. For computational research and comparative analysis, we used Russian and foreign samples of advanced bypass turbojets with an afterburner with the most optimal technical characteristics, made calculations of the gas-dynamic parameters of their cooling systems in four critical jet operating modes. In this paper, we introduce the results of hydraulic calculations of various schemes for supplying cooling air to the nozzle and working blades of a high-pressure turbine. Relying on the results of the calculation, we comparatively analyzed the foreign and Russian cooling systems design, in terms of power indicators and efficiency of a gas turbine jet. To do this, we used the following parameters: cooling air bleeding value at maximum jet speed and cruising mode, value of cooling air leakage through the axial gaps into the flow path, the change in the cooling air bleeding value as a percentage of the flow rate through the high-pressure compressor when switching from maximum to cruising mode, i.e. adaptability of the cooling system, the temperature of the cooling air at the point of supply to the cooling cavities of the blade of the nozzle apparatus or the working blade.


References
[1] Nikitin I.S., Magdin A.G., Pripadchev A.D., Gorbunov A.A. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI journal, 2021, no. 3, pp. 130–138.
[2] Potkin A.N., Krupin V.P., Kozlyakova I.S., Fadeev V.A. Vestnik SGAU — Vestnik of Samara University. Aerospace and Mechanical Engineering, 2012, no. 3, pp. 319–325.
[3] Didenko R.А., Karelin D.V., Ievlev D.G., Shmotin Y.N., Nagoga G.P. Pre-swirl cooling air delivery system performance study. Proceedings of ASME Turbo Expo, 2012, GT68342-2012, pp. 1–12.
[4] Potkin A.N., Belova S.E., Karpov F.V., Oreshkina M.N., Fadeev V.A. Vestnik RGATU im. P.A. Solovyova — Vestnik of P.A. Solovyov Rybinsk State Aviation Technical University, 2009, no. 1 (15), pp. 87–93.
[5] Nesterenko V.G., Nesterenko V.V., Asadollakhi Gokhiekh A. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya (Aerospace engineering and technology), 2014, no. 7, pp. 83–93.
[6] Didenko R.A., Piralishvili Sh.A., Shakhov V.G. Teplovye protsessy v tekhnike (Thermal processes in technology), 2019, vol. 11, no. 10, pp. 434–446.
[7] Nesterenko V.G., Revanth Reddy A. Improvement of the design and methods of designing tubular air-to-air heat exchangers cooling systems of gas turbines. ICAS—2016. Available at: https://www.icas.org/ICAS_ARCHIVE/ICAS2016/data/papers/2016_0433_paper.pdf
[8] Minchenko A., Nesterenko V., Malinovsky I., Revanth Reddy A. Improving the Cooling Air Supply System for the HPT Blades of High-Temperature GTE. Proceedings of the International Conference on Aerospace System Science and Engineering, 2019, pp. 55–65. https://doi.org/10.1007/978-981-15-1773-0_5
[9] Didenko R.A., Piralishvili Sh.A., Vinogradov K.A. Teplovye protsessy v tekhnike (Thermal processes in technology), 2019, vol. 11, no. 11, pp. 514–526.
[10] Piralishvili Sh.A., Piotukh S.M., Potkin A.N., Krupin V.P. Vestnik RGATU im. P.A. Solovyova — Vestnik of P.A. Solovyov Rybinsk State Aviation Technical University, 2013, no. 2 (25), pp. 51–57.
[11] Baturin O.V., Nikolalde P., Tkachenko A.Yu., Volkova A.S. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI journal, 2021, no. 3, pp. 374–375.
[12] Didenko R.A., Piralishvili Sh.A., Shakhov V.G. Teplovye protsessy v tekhnike (Thermal processes in technology), 2020, vol. 12, no. 6, pp. 271–281.
[13] Didenko R.A., Piralishvili Sh.A., Vinogradov K.A. Teplovye protsessy v tekhnike (Thermal processes in technology), 2020, vol. 12, no. 7, pp. 314–324.
[14] Kofman V.M. Metodologiya i opyt eksperimentalno-raschetnogo opredeleniya pokazateley gazodinamicheskoy effektivnosti uzlov GTD po parametram neravnomernykh vozdushnykh i gazovykh potokov [Methodology and experience of experimental and computational determination of indicators of gas-dynamic efficiency of GTE units according to the parameters of non-uniform air and gas flows]. Ufa, USATU Publ., 2013, 400 p.
[15] Kofman V.M. Metodologiya i opyt parametricheskoy identifikatsii matema-ticheskikh modeley gazoturbinnykh dvigateley i ikh uzlov po rezultatam ispytaniy [Methodology and experience of parametric identification of mathematical models of gas turbine engines and their components based on test results]. Ufa, USATU Publ., 2014, 182 p.
[16] Kofman V.M. Vestnik PNIPU. Aerokosmicheskaya tekhnika — PNRPU Aerospace Engineering Bulletin, 2016, no. 46, pp. 7–40.
[17] Kofman V.M. Metodika i programma na EVM dlya identifikatsii matema-ticheskikh modeley kompressorov i ventiliatorov pri ikh rabote v sisteme [Methodology and computer program for identification of mathematical models of compressors and fans during their operation in the system]. Tezisy dokladov IV Mezhdunarodnoy NTK «Aviadvigateli XXI veka» [Abstracts of the IV International STC “Aircraft engines of the XXI century”]. Moscow, CIAM Publ., 2015, pp. 66–68.
[18] Kofman V.M. Sistema metodik i programm dlya eksperimentalno-raschetnogo opredeleniya pokazateley effektivnosti uzlov GTD po parametram neravnomernykh vozdushnykh i gazovykh potokov [A system of methods and programs for the experimental and computational determination of the efficiency indicators of GTE units according to the parameters of uneven air and gas flows]. Tezisy dokladov IV Mezhdunarodnoy NTK «Aviadvigateli XXI veka» [Abstracts of the IV International STC “Aircraft engines of the XXI century”]. Moscow, CIAM Publ., 2015, pp. 349–350.
[19] Tyacke J., Jefferson-Loveday R., Tucker P. On LES methods applied to seal geometries. ASME Turbo Expo. Copenhagen, Denmark, 2012. http://dx.doi.org/10.1007/s10494-013-9480-x
[20] Zhang H., Zheng Q., Yue G. Qingfeng Deng. Unsteady numerical analysis of a whole ring of finger seal with grooves on finger pads. ASME Turbo Expo. San Antonio, TX, USA, 2013. DOI: 10.1115/GT2013-94514
[21] Huang Shouqing, Shuang-fu Suo, Yongjian Li, Yuming Wang. Theoretical and experimental investigation on tip forces and temperature distributions of the brush seal coupled aerodynamic force. Journal of Engineering for Gas Turbines and Power, 2014, vol. 136, art. 052502, 12 p. DOI: 10.1115/1.4026074
[22] Temis J., Selivanov A., Dzeva I. Fluid-structural analysis of a non-contacting finger seal. 29th Congress of the International Council of the Aeronautical Sciences. St. Petersburg, Russia, 2014. Available at: http://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0779_paper.pdf
[23] Pugachev A.O., et al. Structural dynamics optimization of rotor systems for a small-size turboprop engine. Journal of Propulsion and Power, 2015, vol. 31, no. 4, pp. 1083–1093. DOI: 10.2514/1.B35399
[24] Pugachev A.O., et al. Segmentation effects on brush seal leakage and rotor dynamic coefficients. Journal of Engineering for Gas Turbines and Power, 2016, vol. 138, no. 3, art. 032501, 9 p. DOI: 10.1115/1.4031386
[25] Schwarz H., Friedrichs J. Preliminary investigations for a pressure balanced back plate at low inclined brush seals. ASME Turbo Expo. Montreal, Canada, 2015. DOI: 10.1115/GT2015-42580
[26] Schwarz H., Friedrichs J., Flegler J. Axial inclination of the bristle pack, a new design parameter of brush seals for improved operational behavior in steam turbines. ASME Turbo Expo. Dusseldorf, Germany, 2014. DOI: 10.1115/GT2014-26330
[27] Ahmadi M., Khosravi F.A. CFD simulation of non-Newtonian two-phase fluid flow through a channel with a cavity. Thermal Sci., 2020, vol. 24 (2B), pp. 1045–1054.
[28] Ahmadi M., Mirjalily S.A.A., Oloomi S.A.A. RANS k−ω simulation of 2D turbulent natural convection in an enclosure with heating sources. IIUM Engin. J., 2019, vol. 20 (1), pp. 229–244.
[29] Du C., Li L., Wu X., Feng Z. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge. Appl. Thermal Eng., 2015, vol. 48 (7). DOI: 10.1016/j.applthermaleng.2015.09.087
[30] Horlock J., Watson D., Jones T. Limitations on gas turbine performance imposed by large turbine cooling flows. J. Eng. Gas Turb. Power 123 (3), Energy Procedia, 2015, vol. 75, pp. 3220–3229.
[31] Malinovskiy I., Nesterenko V., Starodumov A., Epikhin V., Yusipov B., Belov K. Development of GTE turbine air-cooling system to increase its operating parameters. Aerospace Systems, 2021, no. 4, pp. 239–246.