﻿ Calculation of boost gas parameters at filling the dead-end zones in pneumohydraulic system feed lines of the liquid-propellant rocket engines | Engineering Journal: Science and Innovation
Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
Article

### Calculation of boost gas parameters at filling the dead-end zones in pneumohydraulic system feed lines of the liquid-propellant rocket engines

Published: 29.01.2023

Published in issue: #1(133)/2023

The paper proposes a mathematical model to estimate boost gas parameters at filling the feeding lines dead-end zones of the pneumohydraulic systems (PHS) of the liquid-propellant rocket engines (LRE). These calculations are required in preliminary assessment of the design characteristics of the PHS feed lines designed to ensure operation of the LRE pneumoautomatic systems. Engineering methodology currently existing to solve this problem provides for solution of a system of ordinary differential equations and does not allow tracking alteration in pressure and temperature along the length of the dead-end zones at filling the PHS feed lines. The proposed model takes into account inhomogeneity of the flow parameters along the length of the dead-end zones, as well as the nonadiabaticity of the flow, i.e. it assumes presence of the heat exchange between the walls of the feeding line and the boost gas. The presented model was used to construct dependences of gas parameters alterations in the feeding line. Results obtained were compared with calculations according to the evaluation method, which is traditionally used in the engineering practice to solve this class of problems.

References
[1] Gordeev V.A., Zhukov V.A., Zavadsky V.K., Ivanov V.P., Mozzhorina M.Yu. Sistema nadduva bakov perspektivnykh raket i razgonnykh blokov (printsipy postroyeniya, unifitsirovannye algoritmy upravleniya) [Boost system for tanks of promising missiles and upper stages (principles of construction, unified control algorithms)]. In: Nauchno-tekhnicheskie razrabotki OKB-23-KB “Salyut” [Scientific and technical developments of the OKB-23-KB “Salyut”]. Moscow, Vozdushnyi transpot Publ., 2006, pp. 383–395.
[2] Andreev E.A., Novikov A.V., Shatsky O.E. Raschetnoe i eksperimentalnoe issledovanie nadezhnosti zapuska i vykhoda na rezhim raketnogo dvigatelya maloy tyagi na gazoobraznykh komponentakh kislorod+metan s elektroiskrovym zazhiganiem [Computational and experimental study of reliability of rocket-engine firing and starting operation of low thruster on the gaseous components oxygen + methane with electric spark ignition]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 4 (64). https://doi.org/10.18698/2308-6033-2017-4-1606
[3] Gordeev V.A., Zhukov V.A., Zavadsky V.K., Ivanov V.P., Portnov-Sokolov Yu.P. Novye tekhnologii realizatsii pnevmogidravlicheskikh sistem podachi topliva i ZhRD [New technologies for the implementation of pneumohydraulic fuel supply systems and rocket engines]. Datchiki i systemy — Sensors and Systems, 2002, no. 9, pp. 84–86.
[4] Shevchenko V.V., Davletyarov R.Z. Perspektivy sozdaniya sredstv vyvedeniya tyazhelogo i sverkh tyazhelogo klassa [Prospects for the creation of heavy and super-heavy launch vehicles]. In: Tekhnicheskie nauki v Rossii i za rube-zhom: materialy III Mezhdunar. nauch. konf. (Moskva, iyul 2014 g.) [Technical sciences in Russia and abroad: Materials of the III Int. scientific conference (Moscow, July 2014)]. Moscow, Buki Vedi Publ., 2014, pp. 94–100. Available at: https://moluch.ru/conf/tech/archive/90/5916/ (accessed October 26, 2022).
[5] Kiselev A.I., Medvedev A.A., Nagavkin V.F. Modulnyi printsip sozdaniya raket-nositeley kak strategiya nazemnoy otrabotki v novykh ekonomicheskikh usloviyakh [The modular principle of creating a family of launch vehicles as a strategy for ground testing in the new economic conditions]. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI Journal, 1999, vol. 6, no. 1, pp. 24–28.
[6] Chelomey V.N., Polukhin D.A., Mirkin N.N., Oreshchenko V.M., Usov G.L. Pnevmogidravlicheskie sistemy dvigatelnyh ustanovok s zhidkostnymi raketnymi dvigatelyami [Pneumatic-hydraulic system propulsion systems, liquid rocket engines]. Moscow, Mashinostroenie Publ., 1978, 240 p.
[7] Kraiko A.N. Teoreticheskaya gazovaya dinamika: klassika i sovremennost [Theoretical gas dynamics: classics and modernity]. Moscow, TORUS PRESS Publ., 2010, 440 p.
[8] Katorgin B.I., Kiselev A.S., Sternin L.E., Chvanov V.K. Prikladnaya gazodinamika [Applied gas dynamics]. Moscow, Vuzovskaya Nauka Publ., 2014, 340 p.
[9] Richtmyer R., Morton K. Difference Methods for Initial Value Problems. Wiley, New York, 1972. [In Russ.: Richtmayer R., Morton K. Raznostnye metody resheniya kraevykh zadach. Moscow, Mir Publ., 1972, 418 p.].
[10] Roache P.J. Computational Fluid Dynamics. Hermosa, Albuquerque, NM, 1976 [In Russ.: Rouch P. Vychislitelnaya gidrodinamika. Moscow, Mir Publ., 1980, 616 p.].
[11] Belyaev N.M. Sistemy nadduva toplivnykh bakov raket [Rocket fuel tank pressurization systems]. Moscow, Mashinostroenie, 1976, 336 p.
[12] Sivukhin D.V. Termodinamika i molekulyarnaya fizika [Thermodynamics and Molecular Physics]. Vol. II. 4th ed., stereotype. Moscow, Fizmatlit Publ., 2005, 544 p.
[13] Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha. [Heat transfer]. 3rd ed., revised and enlarged. Moscow, Energia Publ., 1975, 214 p.
[14] Kutateladze S.S. Osnovy teorii teploobmena [Fundamentals of the theory of heat transfer]. 5th ed., revised and enlarged. Moscow, Atomizdat Publ., 1979, 416 p.