Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

The features of solutions of dynamical systems with an external exciting load and non-conservative dynamical systems with pairwise interaction of degrees of freedom

Published: 24.03.2021

Authors: Kashfutdinov B.D., Georgiev A.F.

Published in issue: #3(111)/2021

DOI: 10.18698/2308-6033-2021-3-2061

Category: Mechanics | Chapter: Dynamics, Strength of Machines, Instruments, and Equipment

When mathematical models are developed, as a rule, a number of assumptions is done, which makes it possible to simplify the model, reduce its dimension and simulation time, or use the dimension reduction method. When modeling non-conservative systems with pairwise interaction of degrees of freedom, e.g. mechatronic systems, an elastic aircraft in a flow, an aeroelastic aircraft with an automated control system, etc., there is a desire to reduce the problem to a conservative dynamic system with harmonic action. The study shows that despite the apparent similarity of the tasks, they have significant differences that cannot be ignored. Differences in the behavior of conservative dynamical systems and non-conservative dynamical systems with pair interaction of degrees of freedom are considered. The results are demonstrated on the simplest example with an analytical solution, and in the finite element software package MSC.Nastran. The results of the solution in MSC.Nastran are compared with the results of the analytical solution.

[1] Soldatkin A. AviaSoyuz: mezhdunar. aviatsionno-kosmicheskiy zhurnal — AviaSouz, International Aerospace Magazine, 2017, no. 1 (64), pp. 12–14.
[2] Arinchev S.V. Teoriya kolebaniy nekonservativnykh sistem (s primerami na kompakt-diske) [Oscillation theory for non-conservative systems (with examples on CD)]. Moscow, BMSTU Publ., 2002.
[3] Smyslov V.I. Izvestiya vuzov. PND — Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, no. 6, pp. 143–150. DOI: 10.18500/0869-6632-2005-13-5-143-150
[4] Selyutskiy Y.D. On dynamics of an aeroelastic system with two degrees of freedom. Applied Mathematical Modelling, 2019, vol. 67, pp. 449–455. DOI: 10.1016/j.apm.2018.11.010
[5] Selyutskiy Y.D., Holub A.P., Dosaev M.Z. Elastically Mounted Double Aerodynamic Pendulum. International Journal of Structural Stability and Dynamics, 2019, vol. 19, no. 05, art. ID 1941007. DOI: 10.1142/S0219455419410074
[6] Baikov A., Mayorov A.Y. On the equilibrium position stability of discrete model of filling hose under the action of reactive force. Rus. J. Nonlin. Dyn., 2015, vol. 11, no. 1, pp. 127–146. DOI: 10.20537/nd1501007
[7] Bolotin V.V. Nekonservativnye zadachi teorii uprugoy ustoychivosti [Non-conservative problems in the theory of elastic stability]. Moscow, Gos. izd. fiz.-mat. lit. Publ., 1961, 340 p.
[8] Guskov A.M., Panovko G.Ya. Osobennosti dinamiki mekhanicheskikh sistem pod deystviem nekonservativnykh (tsirkulyatsionnykh) sil [Features of the dynamics of mechanical systems under the influence of non-conservative (circulation) forces]. Moscow, BMSTU Publ., 2013, 56 p.
[9] Fazelzadeh S.A., Tashakorian M., Ghavanloo E., Friswell M.I., Amoozgar M. Non-conservative stability analysis of columns with various loads and boundary conditions. AIAA Journal, 2019, pp. 1–9. DOI: 10.2514/1.j057501
[10] Wei Tian, Yingsong Gu, Hao Liu, Xiaochen Wang, Zhichun Yang, Yueming Li, Ping Li. Nonlinear aeroservoelastic analysis of a supersonic aircraft with control fin free-play by component mode synthesis technique. Journal of Sound and Vibration, 2021, vol. 493. DOI: 10.1016/j.jsv.2020.115835
[11] Menzulskiy S.Yu., Bura R.V. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 12.
[12] Eugeni M., Mastroddi F., Dowell E. H. Normal form analysis of a forced aeroelastic plate. Journal of Sound and Vibration, 2017, vol. 390, pp. 141–163, DOI: 10.1016/j.jsv.2016.12.001
[13] Volmir A.S. Ustoychivost deformiruemykh sistem [Stability of deformable systems.]. Moscow, Nauka Publ., 1967.
[14] Weaver W. Jr., Timoshenko S.P., Young D.H. Vibration Problems in Engineering. John Wiley & Sons, 1990, 624 p. [In Russ.: Timoshenko S.P., Young D.H., Weaver W. Kolebaniya v inzhenernom dele. Moscow, Mashinostroenie Publ., 1985, 472 p.].