Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Determining the relationship between critical conditions of detonation propagation and the average decomposition rates of explosives in detonation waves

Published: 26.04.2019

Authors: Andreev S.G.

Published in issue: #4(88)/2019

DOI: 10.18698/2308-6033-2019-4-1864

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

The study introduces a model of steady propagation of non-ideal detonation of open cylindrical charges with diameters close to critical ones. The model was obtained in the quasi-one-dimensional approximation with the use of analytical methods. We found a solution for the model’s closing equation, which directly relates the average decomposition rate in the detonation front, determined by the parameters of the formal kinetics equation and dependent on the detonation rate, the gas-dynamic parameters of the initial explosive and its reaction products (isentropic exponents), the duration of the chemical peak and ideal detonation velocity, and also the ratio of the charge diameter to the duration of the chemical peak of the ideal detonation. We obtained an equation which reflects the dependence of the non-ideal detonation velocity on the charge diameter. The critical diameter is determined as the range boundary of the charge diameter values at which this equation still has a solution. The study shows that the expression for the fundamental characteristics of the detonation process, i.e. the ratio of the spread time and the reaction time of the explosive, differs from the expression used in the Khariton principle when taking into account the divergence of the reacting flow in the curved detonation front. As for the critical value of this ratio, in general it is different from the unity and is a variable value depending on the characteristics of the kinetics of decomposition of a substance in shock waves. Based on the calculations, we draw a conclusion that changes in the microstructure of the explosive charge of the same composition, displayed by changes in the parameters of the formal kinetics equation, are accompanied by relative changes in the critical diameter, many times greater than the relative changes in the duration of the chemical peak of ideal detonation

[1] Selivanov V.V., ed. Boepripasy. [Ammunition]. In 2 vols. Vol. 1. Moscow, BMSTU Publ., 2016, 506 p.
[2] Selivanov V.V., ed. Boepripasy. [Ammunition]. In 2 vols. Vol. 2. Moscow, BMSTU Publ., 2016, 551 p.
[3] Odintsov V.A., Ladov S.V., Levin D.P. Oruzhie i sistemy vooruzheniya [Armament and armament systems]. Moscow, BMSTU Publ., 2016, 219 p.
[4] Ladov S.V., Kobylkin I.F. Ispolzovanie kumulyativnykh zaryadov vo vzryvnykh tekhnologiyakh [Use of HE shaped charges in explosive technologies]. Moscow, BMSTU Publ., 1995, 47 p.
[5] Kobylkin I.F., Selivanov I.I. Vozbuzhdenie i rasprostranenie vzryvnykh prevrashchenii v zaryadakh vzryvchatykh veshchestv [Excitation and propagation of explosive transformations in explosive charges]. Moscow, BMSTU Publ., 2015, 354 p.
[6] Andreev S.G. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 3.
[7] Orlenko L. P., red. Fizika vzryva [Physics of the explosion.]. In 2 vols. Moscow, FIZMATLIT Publ., 2002, vol. 1, 824 p.
[8] Rozing V.S., Khariton Yu.B. DAN SSSR (Proceedings of the USSR Academy of Sciences), 1940, vol. 26, no. 4, pp. 360–361.
[9] Khariton Yu.B. O detonatsionnoy sposobnosti vzryvchatykh veshchestv [On the detonation ability of explosives]. In: Problemy khimicheskoy kinetiki, goreniya i vzryvov. Sb. trudov [Problems of chemical kinetics, combustion and explosions. Coll. pap.]. Moscow, Leningrad, AN SSSR Publ., no. 1, 1947, pp. 7–29.
[10] Jones H.A. Theory of the dependence of the Rate of Detonation of Solid Explosives on the Diameter of the Charge. Proc. Roy. Soc., 1947, рр. 415–426.
[11] Trofimov V.S., Dremin A.N. Fizika goreniya i vzryva – Combustion, Explosion, and Shock Waves, 1971, vol. 7, no. 3, pp. 427–428.
[12] Mikhaylyuk K.M., Trofimov V.S. Fizika goreniya i vzryva – Combustion, Explosion, and Shock Waves, 1977, vol. 13, no. 4, pp. 606–613.
[13] Kobylkin I.F., Solovev V.S., Boyko M.M. Trudy MVTU no. 387. Mekhanika impulsnykh protsessov (Proceedings of MSTU No. 387. Mechanics of impulse processes), 1982, pp. 13–22.
[14] Bolkhovitinov L.G. Neidealnaya detonatsiya kondensirovannykh vzryvchatykh veshchestv [Non-ideal detonation of condensed explosives]. Sb. «Vzryvnoe delo» [Coll. pap. Blasting work] no. 76/33. Moscow, Nedra Publ., 1976, pp. 150–164.
[15] Andreev S.G. Analogiya sootnoshenii masshtabnykh vremennykh kharakteristik teplovogo i detonatsionnogo vzryvov [Analogy of relations of scale temporal characteristics of thermal and detonation explosions]. XIX Kharitonovskie tematicheskie nauchnye chteniya «Ekstremalnye sostoyaniya veshchestva. Detonatsiya. Udarnye volny. Trudy Mezhdunarodnoy konferentsii [XIX Khariton Topical Scientific Readings “Extreme states of substance. Detonation. Shock waves”. Proceedings of the International Conference]. In two vols. Sarov, RFNC-VNIIEF Publ., 2018, vol. 1, pp. 66–71.
[16] Andreev S.G., Perevalov I.A., Boyko M.M., Klimenko V.Yu. Analiticheskaya model neidealnoy detonatsii tsilindricheskikh zaryadov [Analytical model of non-ideal detonation of cylindrical charges]. Udarnye volny v kondensirovannykh sredakh. Sb. trudov mezhdunar. konf. [Shock waves in condensed media. Coll. pap. of the Intern. Conf.]. St. Petersburg, 2008, pp. 36–45.
[17] Haskins P.J., Cook M.D., Wood A.D. On the Dependence of Critical Diameter and Velocity Decrement at Failure on the Burn Law. Proceedings of the 33rd International Pyrotechnics Seminar. Fort Collins, USA, 2006, pp. 385–391.
[18] Andreev S.G. Development of hot-spot model for explosive decomposition in weak shock wave. New Models and Numerical Codes for Shock Wave Processes in Condensed Media. Proceedings of the International Workshop of Oxford. 1997, рр. 78–88.
[19] Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Udarno-volnovye yavleniya v kondensirovannykh sredakh [Shock-wave phenomena in condensed media]. Moscow, Yanus-K Publ., 1996, 408 p.