### Mathematical model of the elastoplastic shell collapse, taking into account the possible development of the process instability

**Published:**23.05.2019

**Authors:** Novoseltsev А.S., Babkin A.V.

**Published in issue: **#5(89)/2019

**DOI: **10.18698/2308-6033-2019-5-1874

**Category:** Mechanics | **Chapter:** Mechanics of Deformable Solid Body

The mathematical model for the subsequent numerical study of the shaped charge liner collapse affected by external surface forces simulating an explosive load is presented. The basic liner was considered as an originally cylindrical compressible elastoplastic shell within the framework of a two-dimensional flat nonstationary problem of continuum mechanics. To ensure the rationality of the modeling and numerical calculation at the initial time the design fragment was discriminated in the liner by central beams. Deformation of the fragment being a part of the shell was taken into account by the boundary conditions of cyclic repeatability in the tangential direction. For numerical solving the well-known Wilkins Lagrangian method was used, which was refined in terms of the relations describing the mechanical behavior of an elastoplastic medium. Additionally, a self-developed grid adjustment procedure was used, excluding the appearance of highly elongated cells in the calculation. The instability of the shell deformation was initiated by harmonic surface perturbations, initially assigned on the outer or inner surfaces. The degree of instability was assessed by the deviation of the disturbed surface (or the boundary of the so-called stream-forming layer) from the cylindrical one. The used finite-difference algorithms are implemented in the form of appropriate calculation programs. A number of computational verification measures was performed proving the viability of the developed mathematical model and the possibility of its further use

**References**

**[1]**Orlenko L.P., ed. Fizika vzryva [Physics of Explosion.]. In 2 volumes. Vol. 2. Moscow, Phyzmatlit Publ., 2002, 656 p.

**[2]**Baskakov V.D., Zarubina O.V., Karnaukhov K.A., Tarasov V.A. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2016, no. 2 (65), pp. 79–90.

**[3]**Karnaukhov K.A., Baskakov V.D., Korenkov V.V., Zarubina O.V. Peculiarity of the shaped-charge liner collapse concerning the unevenness in its cross-section. Journal of Physics. Conference Series, 2017, vol. 894, no. 1, pp. 012–039.

**[4]**Andreev S.G., Soloviev V.S., Novitsky А.Е., Shikunov N.V. Prodolno-poperechnaya neustoychivost initsiiruyushchikh udarnykh voln [Longitudinal-transverse instability of initiating shock waves]. Trudy V Vsesouznogo soveshchaniya po detonatsii [Proceedings of the V All-Union meeting on detonation]. Krasnoyarsk, 1991, pp. 330–334.

**[5]**Ivanov A.G., Lavrovsky U.D., Ogorodnikov V.A. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1994, no. 5, pp. 116–119.

**[6]**Ivanov A.G., Ogorodnikov V.A., Karpenko G.Y. et al. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1994, vol. 35, no. 4, pp. 163–167.

**[7]**Elliot L.A. Calculation of the Growth of Interface Instabilities by a Lagrangian Mesh Method. 4th Intern. Symp on Detonation. Washington, 1967, рр. 316–320.

**[8]**Kolpakov V.I., Pletnev S.L. Vliyanie predvaritelnogo nagreva oblitsovki na effektivnost deystviya kumulyativnykh zaryadov [The effect of liner pre-heating on the effectiveness of shaped charges]. Tezisy dokladov IV Mezhdunarodnoy konferentsii “Lavrentyevskie chteniya po matematike, mekhanike i fizike [IV International conference «Lavrentyev’s reading on mathematics, mechanics and physics». Abstracts]. Novosibirsk, Institute of Geography, Siberian Branch of the Russian Academy of Sciences Publ., 1995, p. 125.

**[9]**Korenkov V.V., Obukhov A.S., Smelikov V.G. Dvoynye tekhnologii — Dual technologies, 1999, no. 4, pp. 53–54.

**[10]**Obukhov A.C., Korenkov V.V., Smelikov V.G. Probitie stalnoy pregrady zaryadom s predvaritelno hagretoy oblitsovkoy [Penetrating the steel target by the charge with preheated liner]. Tezisy dokladov V Mezhdunarodnoy konferentsii “Lavrentyevskie chteniya po matematike, mekhanike i fizike [V International conference «Lavrentyev’s reading on mathematics, mechanics and physics». Abstracts]. Novosibirsk, Institute of Geography, Siberian Branch of the Russian Academy of Sciences Publ., 2000, p. 141.

**[11]**Babkin A.V., Kolpakov V.I., Ladov S.V., Pletnev, S.L., Fedorov S.V., Bondarenko P.A. Oboronnaya tekhnika (Defense technology), 2000, no. 1–2, pp. 41–48.

**[12]**Babkin A.V., Bondarenko P.A., Fedorov S.V., Ladov S.V., Kolpakov V.I., Andreev S.G. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2001, vol. 37, no. 6, pp. 124–132.

**[13]**Babkin A.V., Bondarenko P.A., Fedorov S.V. et al. Ogranicheniya vozmozhnostey povysheniya probitiya kumulyativnogo zaryada pri impulsnom teplovom vozdeystvii na ego obshivku [Limitations of the possibilities for increasing the penetration of a shaped charge under pulsed heating its liner]. Trudy III Mezhdunarodnoy konferentsii. Kharitonovskie tematicheskie nauchnye chteniya. “Ekstremalnye sostoyaniya veshchestva. Detonaysiya. Udarnye volny” [Proceedings of the III International conference. Kharitonov’s thematic scientific readings. “Extreme states of the substance. Detonation. Shock waves”]. Sarov, Vserossiyskiy nauchno-issledovatelskiy institute eksperimentalnoy fiziki Publ., 2002, pp. 257–263.

**[14]**Drennov O.B., Michaylov A.L., Ogorodnikov V.A. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 4, pp. 171–176.

**[15]**Barnes J.F., Blewitt P.J., McQueen R.G. et al. Tailor instabilities in solids. Journal of Applied Physics, 1974, vol. 45, no. 4, рр. 727–734.

**[16]**Barnes J.F., Janney D.R., London R.R. et al. Further experimentation on Tailor instability in solids. Journal of Applied Physic. 1980, vol. 51, no. 9, рр. 78–79.

**[17]**Charakhchyan А.А. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1997, vol. 38, no. 3, pp. 10–13.

**[18]**Charakhchyan А.А. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 1, pp. 28–37.

**[19]**Gerasimov А.V. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1997, vol. 33, no. 6, pp. 121–126.

**[20]**Kolobanova А.Е., Odintsov V.А., Chudov L.A. Rasprostranenie sistemy treshchin v tsilindre pri impulsnom nagruzhenii [Propagation of a system of cracks in the cylinder under pulsed loading]. Moscow, Institut problem mekhaniki AN USSR, Preprint, no. 181. 1981.

**[21]**Sedov L.I. Mekhanika sploshnoy sredy [Continuum Mechanics.]. Vol. 1. Moscow, Nauka Publ., 1974.

**[22]**Wilkins M. L. Calculation of Elastic-Plastic Flow. In: Methods of Computational Physics. Vol. 3. Alder B., Fernback S. and Roternerg M., eds. New York, Academic Press Publ., 1964 [In Russ.: Wilkins М.L. Raschet uprugoplastichnykh techeniy. In: Vychislitelnye metody v gidrodinamike. Moscow, Mir Publ., 1967, pp. 212–263].