Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Comparative studies of the efficiency of ship wave propulsors of various types

Published: 26.03.2018

Authors: Prokofiev V.V., Filatov E.V., Takmazyan A.K., Yakimov A.Yu.

Published in issue: #3(75)/2018

DOI: 10.18698/2308-6033-2018-3-1743

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The purpose of the work was to examine the influence of pitching motions on the efficiency of a direct-flow wave propulsor. The study shows that in the conditions of pitching, the propulsor effectiveness is reduced. The dependence of the efficiency of the wave propulsor on its placement on the ship's hull is studied. Under the same conditions, a comparative analysis of the efficiency of wave propulsors of various types is carried out. In addition to the direct-flow propulsor, a flexible plate (fin), a swinging plate with elastic coupling, a propulsor of the type of underwater sail are considered. Results suggest that the use of a stabilizer plate at the stern of the vessel increases the efficiency of wave propulsion, as well as a bow swinging plate in the whole investigated wave range. However, in the case of the sail, the presence of the stabilizer leads to low frequencies of the waves. Comparison of different wave propulsors of the waving type has shown a noticeable advantage of the submersible sail propulsor.

[1] Barabanschikov D.A., Serdyukova A.F. Molodoy uchenyy (The Young Scientist), 2016, no. 11 (115), part XVII, pp. 1825–1828.
[2] Senkin Yu.F. Sudovoy volnovoy dvizhitel [Ship wave propulsor]. Certificate of authorship 592671 USSR, cl. В63Н19/02, September 04, 1974. Available at: (accessed December 26, 2017).
[3] Nikolaev M.N., Savitskiy A.I., Senkin Y.F. Basics of Calculation of the Efficiency of a Ship with Propulsor of the Wing Type. Sudostroenie, 1995, vol. 4 (7), pp. 7–10.
[4] Jakobsen E. The Foil propeller, wave power for propulsion. Second Int. Symp. on Wave and Tidal Energy, BHRA Fluid Engineering, 1981, pp. 363–369.
[5] Yaponets pokorit Tikhiy okean s pomoschyu sily voln [The Japanese will conquer the Pacific Ocean with the help of wave power]., 17.03.2008. Available at: (accessed December 26, 2017).
[6] Konstantinov G.A., Yakimov Yu.L. Izvestiya RAN. Mekhanika zhidkosti i gaza — Fluid Dynamics, 1995, no. 3, pp. 139–143.
[7] Yakimov Yu.L., Yakimov A.Yu. Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika — Moscow University Mathematics Bulletin. Moscow University Mechanics Bulletin, 2005, no. 4, pp. 59–62.
[8] Ocheretyanyy S.A., Prokofev V.V., Takmazyan A.K., Filatov E.V. Izvestiya RAN. Mekhanika zhidkosti i gaza — Fluid Dynamics, 2013, no. 4, pp. 27–34.
[9] Prokofev V.V., Takmazyan A.K., Filatov E.V. Izvestiya RAN. Mekhanika zhidkosti i gaza — Fluid Dynamics, 2017, no. 4, pp. 24–38.
[10] Madsen P.A., Schaffer H.A. Higher order Boussinesq-type equations for surface gravity waves: derivation and analysis. Philos. Trans. Royal. Soc. London. Ser. A, 1998, vol. 356, no. 1749, pp. 3123–3184.
[11] Madsen P.A., Bingham H.B., Liu H. A new Boussinesq method for fully nonlinear waves from shallow to deep water. J. Fluid Mech., 1966, vol. 462, pp. 1–30.
[12] Peregrine D. Long waves on a beach. J. Fluid Mech., 1967, vol. 27, pp. 815–827.
[13] Nwogu O. An alternative form of the Boussinesq equations for nearshore wave propagation. J. Waterway, Port, Coastaland. Ocean Engineering, 1993, vol. 119, no. 6, pp. 618–638.
[14] Wei G., Kirby J.T., Grilli S.T., Subramanya R.A. Fully nonlinear Boussinesq model for surface waves. Pt 1. Highly nonlinear unsteady waves. J. Fluid Mech., 1995, vol. 294, pp. 71–92.
[15] Tsuji Y., Nagata Yu. Stokes’ expansion of internal deep water waves to the fifth order. J. Ocean. Soc. Japan, 1973, vol. 29, no. 2, pp. 61–69.
[16] Afanasev K.E., Stukolov S.V. Vestnik Omskogo universiteta (Bulletin of Dostoevsky Omsk State University), 1998, no. 3, pp. 9–12.
[17] Carrier G.F. Gravity waves of variable water depth. J. Fluid Mech., 1966, vol. 24, pp. 641–659.
[18] Carrier G.F., Wu T.T., Yeh H. Tsunami run-up and draw-down on a plane beach. J. Fluid Mech., 2003, vol. 475, pp. 79–99.
[19] Synolakis C.E. The run-up of solitary waves. J. Fluid Mech., 1987, vol. 185, pp. 523–545.
[20] Tuck E.O., Huang L.-S. Long wave generation on a sloping beach. J. Fluid Mech., 1972, vol. 51, pp. 449–461.
[21] Spielvogel L.Q. Single wave run-up on sloping beaches. J. Fluid Mech., 1976, vol. 74, pp. 685–694.
[22] Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskiy L.P. Teoriya solitonov: metod obratnoy zadachi [Soliton theory: the inverse problem method]. Moscow, Nauka Publ., 1980, 320 p.
[23] Geogdzhaev V.V., Zakharov V.E. Pisma v ZhETF — Journal of Experimental and Theoretical Physics Letters (JETP Letters), 2017, no. 106 (3), pp. 175–178.
[24] Agafontsev D.S., Zakharov V.E. Integrable turbulence and formation of rogue waves. Nonlinearity, 2015, 28 (8), pp. 2791–2821.
[25] Chen S., Doolen G. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 1998, vol. 30, pp. 329–364.
[26] Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford, OUP (Oxford University Press), 2001, pp. 82–84.
[27] Shirobokov V.V. CADmaster, 2011, no. 5 (60). Available at: (accessed December 26, 2017).
[28] Pavlenko G.E. Sudostroenie (Shipbuilding and Shiprepair), 1936, no. 6, pp. 394–401.
[29] Senkin Yu.F. Sudovoy volnovoy dvizhitel [[Ship wave propulsor]. Certificate of authorship 1131770 USSR, appl. August 04, 1983, publ. December 30, 1984. Available at: (accessed December 26, 2017).
[30] Senkin Yu.F. Katera i yakhty — Power and Sail Boats, 1987, no. 2 (126), pp. 22–27.
[31] Berg A. Trials with Passive Foil Propulsion on M/S Kystfangst. Trondheim. Techn. Rep. Project No. 672.138 (1985).
[32] Learn More. Liquid robotics. A Boeing Company. URL: (дата обращения 26.12.2017).
[33] Sretenskiy L.N. Teoriya volnovykh dvizheniy zhidkosti [The theory of wave motions of liquids]. 2nd ed. Moscow, Nauka Publ., 1977, 815 p.
[34] Boroday I.K., Netsvetaev Yu.A. Kachka sudna na morskom volnenii [Ship motions at sea confusion]. Leningrad, Sudostroenie Publ., 1969, 432 p.
[35] Drozdov Yu.M., Netsvetaev Yu.A. Trudy TsNII im. A.N. Krylova — Transactions of the Krylov State Research Centre, 1970, no. 259, pp. 64–73.
[36] Spravochnik po teorii korablya. V 3 tom. Tom 1: Gidromekhanika. Soprotivlenie dvizheniyu sudov. Sudovye dvizhiteli [A guide to the theory of the ship. In 3 vol. Vol. 1: Hydromechanics. Resistance to the movement of ships. Ship propulsors]. Yu.I. Voytkunskiy, ed. Leningrad, Sudostroenie Publ., 1985, 764 p.
[37] Basin M.A. Kompyutery. Vikhri. Rezonansy: Volnovaya teoriya vzaimodeistviya struktur i sistem. Chast 2 [Computers. Whirlwinds. Resonances: Wave theory of the interaction of structures and systems. Part 2.]. St. Petersburg, Norma Publ., 2002, 144 p.
[38] Journee J.H.J., Beukelman W. Trial. A computerprogram to calculate the behaviour of a ship in regular and irregular longitudinal waves. Delft University of Technology Papers on Shiphydromechanics, 1975, vol. III. Rapp. 451–M.
[39] Journée J.M.J. Prediction of speed and behavior of a ship in a seaway. International Shipbuilding Progress, 1976, vol. 23, pp. 1–24.
[40] Khaskind M.D. Gidrodinamicheskaya teoriya kachki korablya [Hydrodynamic theory of ship motions]. Moscow, Nauka Publ., 1973, 327 p.
[41] Yakimov Yu.L. O dvizhenii sudna za schet energii morskikh voln. Sb. statey [On the movement of the vessel due to the energy of sea waves. Coll. works]. Moscow, Lomonosov MSU Publ., 2013, pp. 510–519.