Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Cryogenic supply system for high-temperature superconductivity devices (SCR 001)

Published: 23.05.2017

Authors: Kostyuk V.V., Katorgin B.I., Firsov V.P., Kovalev K.L., Ravikovich Yu.A., Antyukhov I.V., Timushev S.F., Vereschagin M.M., Kholobtsev D.P., Ermilov Yu.I., Balaboshko N.G., Gapeev Yu.A., Lesovnikov A.S., Sychkov A.E., Modestov K.A.

Published in issue: #8(68)/2017

DOI: 10.18698/2308-6033-2017-8-1647

Category: Power, Metallurgic and Chemical Engineering | Chapter: Machines and Devices, Processes of Refrigeration and Cryogenic Engineering, Air Conditioning

Creation of an autonomous and efficient cryogenic supply system with a resource of continuous operation of at least 30,000 hours for use in high-current devices (cables, electric motors, generators, transformers, etc.) using high-temperature superconductivity is a key task for the widespread introduction of promising technologies in industry. The study gives the results of the work on creation of a cryogenic supply system for SCR 001 with a cooling capacity of 1,5...2,5 kW at a temperature of 65Kfor local and distributed cryogenic systems. SCR 001 circulates liquid nitrogen at a temperature of 65...75K in a closed circuit of cooling superconductors and ensures the operation of electric motors, generators, etc. The refrigerator KR 001 has been built with a cooling capacity of 1...2,5 kW at 65 K. The refrigerator operates by the gas refrigerating inverted Brighton cycle with radial turbomachines. The design features of the cryorefrigerator are as follows: neon is the working fluid in the gas circuit; turbochargers and turboexpander have gas-dynamic bearings; cooling of the working fluid (neon) after compression occurs in compact plate-finned end heat exchangers with the help of antifreeze, and cooling of antifreeze is due to the air in the heat exchanger by means of fans.

[1] Antyukhov I.V., Volkov E.P., Karpyshev A.V., Kostyuk V.V., Firsov V.P. Teploobmen i gidrodinamika v sistemakh krioobespecheniya silovykh VTSP kabeley [Heat transfer and hydrodynamics in cryogenic HTS power cable systems]. Innovatsionnye tekhnologii v energetike, RAN [Innovative technologies in the energetics, RAS]. Moscow, Nauka Publ., 2010, pp. 99-130.
[2] Hirari H.B. et al. Advances in Cryogenic Engineering, 2010, vol. 55, pp. 895-902.
[3] Mikulin E.I., Marfenina I.V., Arkharov A.M., eds. Tekhnika nizkikh temperatur [Low temperature technique]. Moscow, Energiya Publ., 1975.
[4] Yepifanova V.I. Nizkotemperaturnye radialnye turbodetandery [Low temperature radial turbine expanders]. Moscow, Mashinostroenie Publ., 1974.
[5] Hellstrom F. Numerical computations of the unsteady flow in a radial turbine. Technical Reports from Royal Institute of Technology KTH Mechanics. March 2008, SE-100 44, Stockholm, Sweden.
[6] Software package for gas and fluid flow simulation FlowVision. Version 2.5.0. Manual CAPVIDIA, 1999-2007, Leuven, Belgium.
[7] Wilcox D.C. Turbulence modeling for CFD. 1994, DCW Industries, Inc. 460 p.
[8] Ravikovich Yu.A., Ermilov Yu.I., Kholobtsev D.P., Napalkov A.A. Opyt MAI po sozdaniyu malorazmernykh turboagregatov s gazodinamicheskimi podshipnikami skolzheniya dvigatelnykh i energeticheskikh ustanovok [MAI experience in creating small-sized turbo-aggregates with gas-dynamic bearings of sliding motors and power plants]. Novye tekhnologicheskie protsessy i nadezhnost GTD. Iss. 9. Podshipniki i uplotneniya. Nauchno-tekhnicheskiy sbornik statey [New technological processes and reliability of GTE. Bearings and seals. Scientific and technical collection of articles]. Moscow, CIAM Publ., 2013.
[9] Ravikovich Yu.A., Ermilov Yu.I., Pugachev A.O., Matushkin A.A., Kholobtsev D.P. Mechanisms and Machine Science, 2015, vol. 12, pp. 1277-1288.
[10] Ravikovitch Yu.A., Ermilov Yu.I., Kholobtsev D.P., Sukhomlinov I.Ya., Golovin M.V. Khimicheskoe i neftegazovoe mashinostroenie - Chemical and Petroleum Engineering, 2015, iss. 12, pp. 26-29.