Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

On contribution of the shaped charge jet tail elements in penetrating a target

Published: 15.12.2022

Authors: Fedorov S.V.

Published in issue: #12(132)/2022

DOI: 10.18698/2308-6033-2022-12-2231

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

Calculations demonstrated that penetrating effect of the shaped charges could be significantly increased (by 40–50% in the case of a target made of high-strength steel), if the accuracy of their manufacture makes it possible to reduce the lower velocity threshold, where penetration of the shaped charge jet tail sections into the target terminates. To experimentally confirm these data, it is proposed to study in detail penetrating ability of the shaped charge jet tail sections using the high-density cutoff rods installed at a short distance from the shaped charge (less than its diameter) and designed to eliminate the higher jet speed part. Numerical simulation within the framework of two-dimensional axisymmetric problem of continuum mechanics formed the basis to forecast possible parameters of the cutoff rods to obtain separate tails of the shaped charge jets with different speeds of the leading element.


[1] Lavrentyev M.A. Kumulyativnyi zaryad i printsipy yego raboty [Shaped charge and principles of its operation]. Uspekhi matematicheskikh nauk — Russian Mathematical Surveys, 1957, vol. 12, no. 4, pp. 41–56.
[2] Orlenko L.P., ed. Fizika vzryva [Explosion Physics]. In 2 vols. Moscow, Fizmatlit Publ., 2004, vol. 2, 656 p.
[3] Walters W.P., Zukas J.A. Fundamentals of Shaped Charges. New York, Wiley, 1989, 398 p.
[4] Chou P.C., Flis W.J. Recent developments in shaped charge technology. Propellants, Explosives, Pyrotechnics, 1986, vol. 11, no. 4, pp. 99–114.
[5] Shekhar H. Theoretical modelling of shaped charges in the last two decades (1990–2010): A review. Central European Journal of Energetic Materials, 2012, vol. 9, no. 2, pp. 155–185.
[6] Walters W.P., Summers R.L. A review of jet breakup time models. Propellants, Explosives, Pyrotechnics, 1993, vol. 18, no. 5, pp. 241–246.
[7] Hennequin E. Modelling of the shaped charge jet break-up. Propellants, Explosives, Pyrotechnics, 1996, vol. 21, no. 4, pp. 181–185.
[8] Petit J., Jeanclaude V., Fressengeas C. Breakup of copper shaped-charge jets: experiment, numerical simulations, and analytical modeling. Journal of Applied Physics, 2005, vol. 98, no. 12, ID 123521.
[9] Baburin M.A., Baskakov V.D., Zarubina O.V., Ladov S.V., Nikol’skaya Ya.M., Fedorov S.V. Primenenie profilirovannykh po tolschine zagotovok dlya upravleniya tolschinoy stenki shtampuemykh svintsom obolochkovykh detaley [Application of thickness-shaped billets to control wall thickness of shell parts die-stamped by lead]. Tekhnologiya metallov (Technology of Metals), 2016, no. 11, pp. 2–8.
[10] Ayisit O. The influence of asymmetries in shaped charge performance. International Journal of Impact Engineering, 2008, vol. 35, no. 12, pp. 1399–1404.
[11] Hirsch E. The natural spread and tumbling of the shaped charge jet segments. Propellants, Explosives, Pyrotechnics, 1981, vol. 6, no. 4, pp. 104–111.
[12] Svirsky O.V., Vlasova M.A., Toropova T.A., Nechaev A.I., Krutyakov V.A. Probivnaya sposobnost kumulyativnykh zaryadov na bolshikh fokusnykh rasstoyaniyakh [Penetration capability of shaped charges at large focal distances]. Trudy Mezhdunar. konf. “V Kharitonovskie tematicheskie nauchnye chetiniya — Proceedings of the International Conference “V Kharitonov Topical Scientific Readings”. Sarov, VNIIEF, 2003, pp. 473–477.
[13] Cornish R., Mills J.T., Curtis J.P., Finch D. Degradation mechanisms in shaped charge penetration. International Journal of Impact Engineering, 2001, vol. 26, no. 1-10, pp. 105–114.
[14] Xiao Q.-Q., Huang Z.-X., Zu X.-D., Jia X. Influence of drift velocity and distance between jet particles on the penetration depth of shaped charges. Propellants, Explosives, Pyrotechnics, 2016, vol. 41, no. 1, pp. 76–83.
[15] Moyses M. Penetration by shaped charge jets with varying off-axis velocity distributions. In: Proc. 17th Int. Symp. on Ballistics. Midrand, South Africa, 1998, vol. 2, pp. 413–420.
[16] Babkin A.V., Bondarenko P.A., Fedorov S.V., Ladov S.V., Kolpakov V.I., Andreev S.G. Predely uvelicheniya glubiny probitiya kumulyativnogo zaryada pri impulsnom teplovom vozdeystvii na ego oblitsovku [Limits of increasing the penetration of shaped-charge jets by pulsed thermal action on shaped-charge liners]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2001, vol. 37, no. 6, pp. 124–132.
[17] Shvetsov G.A., Matrosov A.D., Babkin A.V., Ladov S.V., Fedorov S.V. Povedinie metallicheskikh kumulyativnykh struy pri propuskanii po nim impulsnogo elektricheskogo toka [Behavior of metallic shaped-charge jets with passage of a pulsed electric current through them]. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 3, pp. 19–25.
[18] Babkin A.V., Kolychev M.E., Ladov S.V., Fedorov S.V. O vozmozhnom mekhanizme razrusheniya kumulyativnoy strui impulsnym tokom [On a possible mechanism of destruction of the shaped-charge jet by current pulse]. Oboronnaya tekhnika — Defence Technology, 1995, no. 4, pp. 47–54.
[19] Fedorov S.V., Babkin A.V., Ladov S.V. Osobennosti inertsionnogo udlinneniya vysokogradientnogo provodyaschego sterzhnya v prodolnom nizkochastotnom magnitnom pole [Salient features of inertial stretching of a high-gradient conducting rod in a longitudinal low-frequency magnetic field]. Inzhenerno-fizicheskiy zhurnal — Journal of Engineering Physics and Thermophysics, 2001, vol. 74, no. 2, pp. 79–86.
[20] Ma B., Huang Z., Guan Z., Zu X., Jia X., Xiao Q. Research of the axial strong magnetic field applied at the initial period of inertial stretching stage of the shaped charge jet. International Journal of Impact Engineering, 2018, vol. 113, pp. 54–60.
[21] Fedorov S.V. Termicheskoe razuprochenie metallicheskikh kumulyativnykh struy, formiruemykh pri skhlopyvanii kumulyativnoy oblitsovku v sluchae nalichiya magnitnogo poly [Thermal softening of metallic shaped-charge jets formed by the collapse of shaped-charge liners in the presence of a magnetic field]. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, no. 3, pp. 108–120.
[22] Fedorov S.V., Bolotina I.A., Strukov Yu.A. O termicheskikh effektakh pri inertsionnom rastyazhenii vysokogradientnogo provodyaschego sterzhnya s “zamorozhennym” magnitnym polem [Thermal effects during inertial stretching of high-gradient conductive rod with ‘‘frozen’’ magnetic field]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2018, no. 2, pp. 39–59.
[23] Fedorov S.V. Usilenie magnitnogo polya v metallicheskikh kumulyativnykh struyakh pri ikh inertsionnom udlinenii [Magnetic-field amplification in metal shaped-charge jets during their inertial elongation]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2005, vol. 41, no. 1, pp. 120–128.
[24] Held M. Penetration cutoff velocities of shaped charge jets. Propellants, Explosives, Pyrotechnics, 1988, vol. 13, no. 4, pp. 113–119.
[25] Boeka D., Hancock S., Ouye N. Cutoff velocity in precision shaped charge jets. In: Proc. 19th Int. Symp. on Ballistics. Interlaken, Switzerland, 2001, vol. 3, pp. 1471–1478.
[26] Hancock S.L. An extension of Umin model for cutoff of high precision jets. International Journal of Impact Engineering, 2001, vol. 26, no. 1-10, pp. 289–298.
[27] Svirsky O.V., Vlasova M.A. O probivnoy sposobnosti kumulyativnykh zaryadov s konicheskoy i polusfericheskoy oblitsovkami [On the penetration capability of shaped charges with conical and hemispherical liners]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2019, vol. 55, no. 6, pp. 115–119.
[28] Grigoryan V.A. (Ed.). Chastnye voprosy konechnoy ballistiki [Portionicular questions of terminal Ballistics]. Moscow, BMSTU Publ., 2006, 592 p.
[29] Orlenko L.P. Povedenie materialov pri intensivnykh dinamicheskikh nagruzkakh [Behavior of materials under intense dynamic loads]. Moscow, Mashinostroenie Publ., 1964, 168 p.
[30] Zhernokletov M.V. (Ed.). Metody issledovaniya svoistv materialov pri intensivnykh dinamicheskikh nagruzkakh [Methods for studying the properties of materials under intense dynamic loads]. Sarov, RFNC–VNIIEF Publ., 2005, 428 p. (in Russian).
[31] Chou P.C., Grudza M., Liu Y.F., Ritman Z. Shaped charge jet breakup formula with metal anisotropy. In: Proc. 13th Int. Symp. on Ballistics. Stockholm, Sweden, 1992, vol. 2, pp. WM/489–496.
[32] Chantaret P.Y. Theoretical considerations about jet density and shaped charge performance. In: Proc. 17th Int. Symp. on Ballistics. Midrand, South Africa, 1998, vol. 2, pp. 373–380.
[33] Svirsky O.V., Vlasova M.A., Korotkov M.I., Krutyakov V.A., Toropova T.A. The analytical model ATOS-M for computing of the shaped charge jet penetration parameters. International Journal of Impact Engineering, 2003, vol. 29, no. 1-10, pp. 683–690.
[34] Mayseless M., Hirsch E., Lindenfeld A., Me-Bar Y. Jet tip and appendix characteristics dependence on the liner thickness in 60° point initiated shaped charge. In: Proc. 17th Int. Symp. on Ballistics. Midrand, South Africa, 1998, vol. 2, pp. 187–195.
[35] Fedorov S.V. Chislennoe modelirovanie formirovaniya kumulyativnykh struy polusfericheskimi oblitsovkami degrssivnoy tolschiny [Numerical simulation of the formation of shaped-charge jets from hemispherical liners of digressive thickness]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2016, vol. 52, no. 5, pp. 116–130.
[36] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Prikladnaya mekhanika sploshnykh sred. V 3 t. Tom 3. Chislennye metody v zadachyakh fiziki bystroprotekayuschikh protsessov [Applied continuum mechanics. In 3 vols. Vol. 3. Numerical methods in problems of physics of fast-flowing processes]. Moscow, BMSTU Publ., 2006, 520 p.
[37] Chernyak G.B., Povarova K.B. Volfram v boepripasakh [Tungsten in ammunition]. Moscow, CNIIKhM Publ., 2014, 355 p.
[38] Fedorov S.V., Bayanova Ya.M. Hydrodynamic model for penetration of extended projectiles with consideration of material compressibility. In: Proc. 25th Int. Symp. on Ballistics. Beijing, China, 2010, pp. 1032–1039.
[39] Curtis J.P., Moyses M., Arlow A.J., Kowan K.G. A break-up model for shaped charge jets. In: Proc. 16th Int. Symp. on Ballistics. San Francisco, USA, 1996, vol. 2, pp. WM/369–377.