Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Aircraft guidance system based on prior information on the target location

Published: 17.08.2018

Authors: Shvyrkina O.S., Klishin A.N.

Published in issue: #8(80)/2018

DOI: 10.18698/2308-6033-2018-8-1791

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

Developing aircraft that navigates towards the target automatically within a given margin of error is an urgent issue. Hence, the paper considers an aircraft guidance system that implements terminal homing guidance. As a source of data on target location, we propose using popular radar seekers featuring two instrument channels: a goniometer and an altitude meter. We note that clutter or jamming will interfere with seeker operation and, as a result, significantly decrease the accuracy of the hit. This is why there exists an objective to develop guidance systems ensuring that the desired homing accuracy will be possible when the enemy adopts radar countermeasures. In order to implement this, we consider a method of restoring lost data using other, uncorrupted measurements as an information base. We designed terminal guidance algorithms for a given missile that show the efficiency of the system developed


References
[1] Usachev V.A., Golov N.A., Kudryavtseva N.V. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of Bauman MSTU, 2011, no. 10. Available at: http://technomag.edu.ru/doc/245950.html (accessed January 13, 2018).
[2] Bakut P.A. Voprosy statisticheskoy teorii radiolokatsii [Problems of statistical radiolocation theory]. Moscow, Sovetskoe Radio Publ., 1963, 420 p.
[3] Sokolov N.L., Orlov D.A. “Vestnik Moskovskogo aviatsionnogo instituta” Journal (Bulletin of Moscow Aviation Institute), 2016, no. 1, pp. 98–106.
[4] Tewari A. Advanced control of aircraft, spacecraft and rockets. Department of Aerospace Engineering Indian Institute of Technology, Kanpur, India, 2011, 436 p.
[5] Akinshin R.N., Starozhuk E.A., Andreev A.V. Nauchnyy vestnik GosNIIGA — Scientific Bulletin of the State Scientific Research Institute of Civil Aviation (GosNIIGA), 2015, no. 11, pp. 33–44.
[6] Sikharulidze Yu.G. Ballistika i navedenie letatelnykh apparatov [Aircraft ballistics and guidance]. Moscow, BINOM, Laboratoriya Znaniy Publ., 2011, 407 p.
[7] Koryanov V.V., Kazakovtsev V.P. Estestvennye i tekhnicheskie nauki — Natural and technical sciences, 2014, no. 9–10, pp. 179–184.
[8] Kharisov E., Gregory I., Cao C., Hovakimyan N. Adaptive control law for flexible space launch vehicle and proposed plan for flight test validation. AIAA Guidance, Navigation and Control Conference and Exhibit, 2008, no. 7128, pp. 20–36.
[9] Benevolskiy S.V. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal POLET — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2002, no. 6, pp. 54–60.
[10] Lebedev A.A., Karabanov V.A. Dinamika sistem upravleniya bespilotnymi letatelnymi apparatami [Guidance system dynamics for unmanned aircraft]. Moscow, Mashinostroenie Publ., 1965, 528 p.
[11] Johnson C.E. Adaptive control of combustion instabilities using real-time modes observation. Georgia Institute of Technology, 2006, 208 p.
[12] Lukin K.G., Pavlov D.V., Petrov M.N. Vestnik Novgorodskogo gosudarstvennogo universiteta — Vestnik of Yaroslav the Wise Novgorod State University, 2013, no. 75, pp. 31–34.
[13] Koryanov V.V. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal POLET — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2010, no. 1, pp. 42–49.
[14] Lysenko L.N., BetanovV.V., Zvyagin F.V. Teoreticheskie osnovy ballistiko-navigatsionnogo obespecheniya kosmicheskikh poletov [Theoretical foundations of ballistics and navigation support of space missions]. Moscow, BMSTU Publ., 2014, 518 p.
[15] Mingzhe H., Xiaoling L., Guangren D. Adaptive block dynamic surface control for integrated missile guidance and autopilot. Chinese Journal of Aeronautics, 2013, no. 26 (3), pp. 741–750.
[16] Kirillov S.N., Tokar A.D. Vestnik RGRTU — Scientific and Technical Journal “Vestnik of Ryazan State Radio Engineering University”, 2008, no. 24, pp. 33–38.
[17] Johnson E., Calise A., Corban J. Adaptive guidance and control for autonomous launch vehicles. AIAA J. of Guidance, Control and Dynamics, 1998, no. 6, vol. 21, pp. 867–875.
[18] Kazakovtsev V.P., Zhileykin V.D. Obrabotka strelb. [Live-fire trial result processing]. Moscow, BMSTU Publ., 2009, 27 p.
[19] Klishin A.N., Shvyrkina O.S. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 9 (57). Available at: http://dx.doi.org/10.18698/2308-6033-2016-09-1534 (accessed October 20, 2017).
[20] Solunin V.L., ed. Osnovy teorii sistem upravleniya vysokotochnykh raketnykh kompleksov Sukhoputnykh voysk [Foundations of guidance system theory for ground forces precision rocket systems]. Moscow, BMSTU Publ., 2001, 328 p.