Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Mathematical model of the spacecraft longitudinal motion in its flight different segments

Published: 23.08.2023

Authors: Ermakov V.Yu., Tufan A., Biryukova M.V., Firsyuk S.O.

Published in issue: #8(140)/2023

DOI: 10.18698/2308-6033-2023-8-2298

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The article studies the spacecraft stability at small and large angles of attack under the influence of disturbances arising from aerodynamic drag, wind speed and linear thrust eccentricity caused by deviations (misalignment) of the installation angle of the booster engine of the spacecraft. Possible use of spacecraft with opening braking surfaces when moving in the atmosphere is described. A mathematical model of disturbed motion of the spacecraft at various stages of its flight to the destination planet has been developed. The resulting mathematical model was used in the studies of the launch of a spacecraft from an inclined, vertical launch facilities and descent for landing on the surface without taking into account the operation of braking engines. The parameters of the trajectories of a spacecraft with a booster in the pitch plane are calculated depending on the flight altitude and the inclination of the launch pad.


References
[1] Alifanov O.M., Ivankov A.A., Netelev A.V., Finchenko V.S. Issledovanie kharakteristik teplozaschitnogo pokrytiya aerouprugikh tormoznykh ustroystv spuskaemykh v atmosfere planet apparatov [Study of the characteristics of the heat-shielding coating of aero-elastic braking devices of vehicles descending in the atmosphere of planets]. Trudy MAI, 2013, no. 71, p. 18. Available at: https://trudymai.ru/published.php?ID=46756
[2] Marrafa L., Finchenko V., Pichkhadze K., et al. Inflatable Re-entry Technologies. Flight Demonstration and Future Prospects. ESA Bulletin, 2000, no. 103, pp. 78–85.
[3] Aleksashkin S.N., Pichkhadze K.M., Finchenko V.S. Printsipy proektirovaniya spuskaemykh v atmosferakh planet apparatov s naduvnymi tormoznymi ustroystvami [Design principles of the descent vehicles with inflatable braking device]. Vestnik FGUP “NPO im. S.A. Lavochkina” — Bulletin of Lavochkin Association, 2012, no. 2, pp. 4–11.
[4] Lyskov D.V., Terentev V.V., Harri A.-M., Uspensky M.V., Haukka H., Alexsashkin S.N., Finchenko V.S. Spuskaemye v atmosferakh planet apparaty s aerouprugimi (naduvnymi) tormoznymi ustroystvami i modelirovanie teplovykh stendovykh ispytaniy ikh polnomasshtabnykh maketov [Descending in the atmospheres of planets vehicles with an inflatable braking device and modeling of thermal tests of full-scale mockups]. Teplovye protsessy v tekhnike — Thermal Processes in Engineering, 2015, vol. 7, no. 8, pp. 370–378.
[5] Martynov A.K. Prikladnaya aehrodinamika [Applied Aerodynamics]. Moscow, Mashinostroenie Publ., 1972, 448 p.
[6] Abramov I.P., Aldashkin I.V., Alekseev E.V, et al. Mashinostroenie. Raketno-kosmicheskaya tekhnika [Mechanical engineering. Rocket and space technology]. V.P. Legostaev, ed. Vol. IV-22. In 2 books. Book 2. Part 1. Moscow, Mashinostroenie Publ., 2014, pp. 496–562.
[7] Moss J.N., Glass C.E., Hollis B.R., Van Norman J.W. Low-density aerodynamics of the ınflatable re-entry vehicle experiment (IRWE). AIAA Paper 2006-1189, 2006.
[8] Krasnov N.F. Aehrodinamika [Aerodynamics]. Moscow, Vysshaya Shkola Publ., 1980, pt. 2, 416 p.
[9] Rabinovich B.I. Vvedenie v dinamiku raket-nositeley kosmicheskikh apparatov [Introduction to spacecraft launchers dynamics]. Moscow, Mashinostroenie Publ., 1983, 296 p.
[10] Ostaslovskii I.V. Dinamika poleta, ustoychivost i upravlyaemost letatelnykh apparatov [Aircraft flight dynamics, stability and controllability]. Moscow, Mashinostroenie Publ., 1976, 442 p.
[11] Ermakov V.Yu. Dinamicheskoe modelirovanie dlinnomernoy konstruktsii obyekta s uchetom vliyaniya vozdushnoy sredy [Dynamic modeling of a long-length structure of an object taking into account the influence of the air environment]. Dvoynye tekhnologii — Dual Technologies, 2022, no. 3 (100), pp. 42–48.
[12] Ermakov V.Yu., Tufan A. Problemy, obuslovlennye rabotoy sistem s podvizhnymi massami pri ekspluatatsii kosmicheskikh apparatov [Problems arising from systems with moving masses during the operation of spacecraft]. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2023, no. 5 (128), pp. 134–145.
[13] Alekseev K.B., Bebenin G.G. Upravlenie kosmicheskimi letatelnymi apparatami [Spacecraft Control]. Moscow, Mashinostroenie Publ., 1974, 343 p.
[14] Ermakov V.Yu., Tufan A. Dinamika kosmicheskih apparatov [Spacecraft dynamics]. Moscow, MAI Publ., 2023, 92 p.
[15] Ermakov V.Yu. Termovakuumnye issledovaniya po opredeleniyu dinamicheskikh kharakteristik dlinnomernykh konstruktsiy [Thermal-vacuum studies on determining dynamic characteristics of long-length structures]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2022, vol. 14, no. 9, pp. 386–393. (In Russ.).
[16] Biryukova M.V., Tufan A., Ermakov V.Yu. Podkhod k snizheniyu vibroaktivnosti malykh kosmicheskikh apparatov [Approach to reducing vibro-activity of small spacecraft]. Vestnik MGTU im. N.E. Bauman — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2023, no. 1 (144), pp. 4–21.