Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Lunar radio-optical navigation penetrating beacon: Possible design solutions

Published: 25.09.2023

Authors: Vernigora L.V., Dmitriev A.O., Kazmerchuk P.V., Leun E.V., Panin Yu. V., Sysoev V.K.

Published in issue: #9(141)/2023

DOI: 10.18698/2308-6033-2023-9-2303

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The paper presents proposals to create a lunar radio-optical navigation beacon based on the light-emitting diodes with the selenodesic reference points. Introduction of the semiconductor emitters in the infrared (0.85 microns) and ultraviolet (0.24 microns) ranges makes it possible to improve reliability in the beacon signal reception and take the measurements both in the day and nighttime intervals. As a device in creating such beacons, the paper proposes to use a two-component penetrator equipped with a thermoelectric generator to convert thermal energy into the electrical energy due to the temperature gradient in the lunar regolith and a heat pipe connecting the penetrator bow and the tail parts to ensure higher heat transfer. Technology to create such a beacon system for long-term operations under the lunar environment is analyzed.


References
[1] Toldbo Ch., Kiss A., Törjék N., Vázquez C.A.T., Bényei D.L., Therkelsen M. Deployment method and optimal placement of surface beacon navigation system for co-located lunar landings. Acta Astronautica, 2022, vol. 193, pp. 432–443.
[2] Matveev Yu.A., Sysoev V.K., Feofanov A.S. Analiticheskiy obzor kosmicheskih apparatov dlya kontaktnykh issledovaniy Luny [Analytical review of the spacecrafts for Moon surface exploration]. Obscherossiyskiy nauchno-tekhnicheskiy zhurnal “Polet” — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2019, no. 6, pp. 23–32.
[3] Bagrov A.V., Mitkin A.S., Moskatiniev I.V., Sysoev V.K., Yudin A.D. Predlozheniya po razvitiyu inzhenernoy infrastruktury kak vazhnogo etapa v issledovanii i osvoenii Luny [Proposals for the development of engineering infrastructure as a key milestone of lunar exploration]. Vestnik NPO imeni S.A. Lavochkina — Bulletin of Lavochkin Association, 2018, no. 4 (42), pp. 24–30.
[4] Kaplev S.A., Kremenetskiy N.O., Ignatovich E.I., Bolkunov A.I. Vybor struktury orbitalnoy gruppirovki lunnoy navigatsionno-svyaznoy sistemy dlya razlichnoy kratnosti pokrytiya i etapov predostavleniya uslug [Selection of the orbital grouping structure for a lunar navigation and communication system with various coverage multiplicities and stages of the service provision]. Obscherossiyskiy nauchno-tekhnicheskiy zhurnal “Polet” — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2019, no. 11, pp. 3–19.
[5] Gordienko E.S., Ivashkin V.V., Simonov A.V. Analiz ustoychivosti orbit iskusstvennykh sputnikov Luny i vybor konfiguratsii lunnoy navigatsionnoy sputnikovoy sistemy [Moon artificial satellite orbits stability analysis and lunar navigation satellite system configuring]. Vestnik NPO imeni S.A. Lavochkina — Bulletin of Lavochkin Association, 2016, no. 4, pp. 40–54.
[6] Chebotarev V.E., Kudymov V.I., Zvonar V.D., Vnukov A.A., Vladimirov A.V. Kontseptsiya okololunnoy navigatsii [Circumlunar navigation]. Issledovaniya naukograda — The Research of the Science City, 2014, no. 4 (10), pp. 14–20.
[7] Dmitriev A.O., Moskatinev I.V., Nesterin I.M., Sysoev V.K. Analiz variantov navigatsionnykh sistem dlya Luny [Options analysis of navigation systems for the Moon]. Trudy MAI, 2021, no. 118. DOI: 10.34759/trd-2021-118-09 Available at: https://trudymai.ru/published.php?ID=158243
[8] Bagrov A.V., Dmitriev A O., Leonov V.A., Mitkin A.S., Moskatiniev I.V., Sysoev V.K., Shirshakov A.E. Globalnaya opticheskaya navigatsionnaya sistema dlya Luny [Global Lunar optical navigation system]. Trudy MAI, 2018, no. 99. Available at: https://trudymai.ru/published.php?ID=91810
[9] Bagrov A.V., Dmitriev A.O., Leonov V.A., Moskatiniev I.V., Sysoev V.K., Shirshakov A.E., Yudin A.D. Sistema globalnogo pozitsionirovaniya dlya Luny na osnove aktivnykh svetovykh mayakov [The Moon global positioning system based on active light beacons]. Vestnik NPO imeni S.A. Lavochkina — Bulletin of Lavochkin Association, 2017, no. 4 (38), pp. 5–10.
[10] Vernigora L.V., Kazmerchuk P.V., Sysoev V.K., Dmitriev A.O. Metodika izmereniya koordinat lunnykh posadochnykh stantsiy s pomoschyu opticheskikh televizionnykh sredstv kosmicheskikh apparatov [Methods of lunar landing stations’ coordinates measurements using spacecraft optical television means]. Trudy MAI, 2020, no. 114. DOI: 10.34759/trd-2020-114-12 Available at: https://trudymai.ru/published.php?ID=118986
[11] Starinova O.L., Fain M.K. Optimizatsiya pereleta kosmicheskogo apparata s elektroraketnoy dvigatelnoy ustanovkoy k tochke libratsii L2 sistemy Zemlya—Luna [Optimization of electric propulsion spacecraft transfer to the libration point L2 of the Earth—Moon system]. Trudy MAI, 2015, no. 84. Available at: https://trudymai.ru/published.php?ID=63043
[12] Bagrov A.V., Dmitriev A.O., Leonov V.A., Moskatiniev I.V., Sysoev V.K., Shirshakov A.E. Postroenie opticheskoy lunnoy navigatsionnoy sistemy na baze kosmicheskikh apparatov AO “NPO Lavochkina” [Constructing an optical lunar navigation system based on spacecraft made by Lavochkin Association]. Kosmicheskaya tekhnika i tekhnologii — Space Engineering and Technology, 2019, no. 4 (27), pp. 12–26.
[13] Kazmerchuk P.V., Martynov M.B., Moskatiniev I.V., Sysoev V.K., Yudin A.D. Kosmicheskiy apparat «Luna-25» – osnova novykh issledovaniy Luny [“LUNA-25” Spacecraft — the basis of the new lunar exploration]. Vestnik NPO imeni S.A. Lavochkina — Bulletin of Lavochkin Association, 2016, no. 4, pp. 9–19.
[14] Vernigora L.V., Pichkhadze K.M., Sysoev V.K. Analiz parametrov izluchatelya opticheskogo mayaka dlya sistemy navigatsii kosmicheskih apparatov [Analysis of optical beacon emitter parameters for spacecraft navigation system]. Trudy MAI, 2017, no. 95. Available at: https://trudymai.ru/published.php?ID=84553
[15] Bagrov A.V., Dmitriev A.O., Leonov V.A., Moskatiniev I.V., Sysoev V.K. Dvukhvolnovaya opticheskaya lunnaya navigatsionnaya sistema [Two-wave optical lunar navigation system]. Trudy MAI, 2020, no. 112. Available at: https://trudymai.ru/published.php?ID=116356 DOI: 10.34759/trd-2020-112-13
[16] Leun E.V., Nesterin I.M., Pichkhadze K.M., Polyakov A.A., Sysoev V.K. Obzor skhem penetratorov dlya kontaktnykh issledovaniy kosmicheskikh obyektov [A review of penetrator designs for contact studies of space objects]. Kosmicheskaya tekhnika i tekhnologii — Space Engineering and Technology, 2022, no. 2 (37), pp. 103–117.
[17] Haitao Luo, Yuxin Li, Guangming Liu, Changshuai Yu, Shipeng Chen. Buffering performance of high-speed impact space penetrator with foam-filled thin-walled structure. Shock and Vibration, 2019, vol. 4, article ID 7981837. https://doi.org/10.1155/2019/7981837
[18] Veldanov V.A. Chislennaya otsenka pronikaniya moduley kosmicheskikh apparatov v asteroidy [Numerical estimation of the spacecraft modules penetration into the asteroids]. Izvestiya Chelyabinskogo nauchnogo tsentra, spetsialnyi vypusk «Kosmicheskaya zaschita Zemli», chast 1 — Bulletin of the Chelyabinsk Scientific Center, special issue “Space protection of the Earth”, part 1, 1997, pp. 173–178.
[19] Veldanov V.A., Naumov A.N., Kudryavtsev A.N. Prostranstvennoe pronikanie penetratora s dempferom pribornogo otseka [Spatial penetration of the penetrator with the instrument compartment damper]. Oboronnaya tekhnika — Defense Technology, 1996, no. 8–9, pp. 55–58.
[20] Panin Yu.V., Korzhov K.N. Razrabotka teploperedayuschego ustroystva dlya alternativnogo sposoba termoregulirovaniya sistemy obespecheniya teplovogo rezhima kosmicheskogo apparata [Design of heat transfer device for alternative thermal regulation method of space craft]. Trudy MAI, 2015, no. 80. Available at: https://trudymai.ru/published.php?ID=56911
[21] Shostakovskiy P. Sovremennye termoelektricheskie istochniki pitaniya elektronnykh ustroystv [Modern thermoelectric power supplies for electronic devices]. Komponenty i tekhnologii — Components and Technologies, 2015, no. 1 (162), pp. 90–95.