Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Assessment of the technical and economic efficiency of using additive technologies in manufacture of the spacecraft parts

Published: 30.10.2023

Authors: Borschev Yu.P., Sysoev V.K.

Published in issue: #10(142)/2023

DOI: 10.18698/2308-6033-2023-10-2310

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The paper presents technical and economic analysis of the effectiveness of using the features and advantages of the additive selective laser melting (SLM) technology in design and manufacture of the spacecraft antenna-feeder systems (AFS) elements using specific examples of the angular waveguides and antennas manufactured at the Lavochkin Association. Main advantages of introducing the SLM technology in comparison with the use of traditional technologies are shown. They include reducing duration and cost of the product development and manufacturing processes; ability to create unique designs with new performance characteristics inaccessible to other technologies; improvement of the weight and size characteristics; increasing the spacecraft active life by improving the AFS reliability. Results of the technical and economic analysis confirm effectiveness and relevance of the SLM technology implementation in conditions of the spacecraft AFS elements small-scale manufacture at the rocket and space industry enterprises.


References
[1] Tyulin A.E., Erokhin G.A., Pavlov A. V., Gorbunov V.A., Tyulkova A.A., Smirnova O.N. Primeneniye 3D-pechati dlya izgotovleniya elementov radioelektronnoy apparatury kosmicheskogo naznacheniya [The Use of 3D Printing for the Manufacture of Radio Electronic Equipment Elements for Space Application]. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy — Rocket-Space Device Engineering and Information Systems, 2022, vol. 9, no. 3. pp. 76–90.
[2] Ermakov A., Kalinichev V., Nisan A., Potapov G., Frolova Ye. Opyt 3D-pechati elementov volnovodnykh SVCh-traktov i rupornykh antenn diapazona 8,5–31 GGts [Experience in 3D printing of elements of the wave-guide MWF lines and horn antennas in the 8.5–32 GHz range]. Vektor vysokikh tekhnologiy, 2019, no. 1 (41), pp. 8–19.
[3] Borshchev Yu. P., Sysoev V. K. Integrirovannaya metodika proektirovaniya elementov antenno-fidernykh sistem kosmicheskikh apparatov i tekhnologicheskikh protsessov ikh izgotovleniya s primeneniem selektivnogo lazernogo splavleniya [Integrated technique for designing spacecraft antenna-feeder systems elements and technological processes for their manufacturing employing selective laser alloyage]. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI Journal, 2022, vol. 29, no. 2, pp. 35–44.
[4] Borshchev Yu.P., Ananyev A.I., Kamyshanov I.V., Telelyayev E.N. Primeneniye metoda 3D-pechati pri izgotovlenii elementov antenno-fidernykh ustroystv kosmicheskikh apparatov [Application of 3D printing method in manufacture of elements of spacecraft antenna-feeder systems]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2020, iss. 9 (105). https://doi.org/10.18698/2308-6033-2020-9-2014
[5] Bushminskiy I.P. Izgotovleniya elementov konstruktsii SVCh. Volnovody i volnovodnye ustroystva [Manufacture of the MWF structure elements. Waveguides and waveguide systems]. Moscow, Vysshaya Shkola Publ., 1974, 304 p.
[6] SLM280 2.0. Available at: https://www.slm-solutions.com/products-andsolutions/machines/slm-280/ (accessed May 18, 2023).
[7] Kyarimov R.R., Shaposhnikov N.N., Mitryanin A.V. Tekhniko-ekonomicheskoe obosnovanie primeneniya additivnoy tekhnologii selektivnogo lazernogo splavleniya na primere elementov kosmicheskoy tekhniki iz titana [Feasibility study for use of selective laser melting-based additive manufacturing technology as exemplified by titanium space hardware components]. Kosmicheskaya tekhnika i tekhnologii — Space Engineering and Technology, 2022, no. 4 (39), pp. 4–20.
[8] Knyazev S.A., Pyzhov S.I. Analiz tekhniko-ekonomicheskoy tselesoobraznosti vnedreniya additivnykh tekhnologiy v vertoletostroenii [Analysis of technical and economic feasibility of introducing additive technologies in helicopter construction]. Molodoy uchenyi — Young Scientist, 2019, no. 49, pp. 175–184. Available at: https://moluch.ru/archive/287/64950/
[9] Borshchev Yu. P., et al. Rupornaya antenna s ellipticheskim polyarizatorom [Horn antenna with elliptic polarizer]. Patent RF no. 2778279. Application: 2021128844 dated October 4, 2021. Publ.: August 17, 2022. Bull. no. 23.
[10] Borshchev Yu.P., et al. Konicheskaya spiralnaya antenna i sposob ee izgotovleniya [Cone spiral antenna and its manufacture technique]. Patent RF no. RU 2 730 114 C2. Application: 2020100068 dated January 10, 2020. Pub.: August 17, 2020. Bull. no. 23.
[11] Pervyi opyt pechati metallom volnovodnogo filtra Ka-diapazona na 3D printere [First experience in metal printing of the Ka-band waveguide filter on the 3D printer]. Blog kompanii Spetsialnyi Tekhnologicheskiy Tsentr — Special Technological Center blog. Available at: https://habr.com/ru/companies/stc_spb/articles/659691/ (accessed May 18, 2023).
[12] Smirnov A.S., Galinovskiy A.L., Martysyuk D.A. Snizhenie sherokhovatosti poverkhnostey additivnykh izdeliy elektrokhimicheskimi metodami obrabotki [Reducing additive product surface roughness by electrochemical processing methods]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye — BMSTU Journal of Mechanical Engineering, 2022, no. 7, pp. 16–23. https://doi.org/10.18698/0536-1044-2022-7-16-23