Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Assessment of the reliability of aerosol pollution monitoring in the atmosphere by comparing the results of lidar sensing data processing and local sampling

Published: 29.11.2019

Authors: Kolgotin A.V.

Published in issue: #11(95)/2019

DOI: 10.18698/2308-6033-2019-11-1936

Category: Aviation and Rocket-Space Engineering | Chapter: Innovation Technologies of Aerospace Engineering


Data measured with remote (lidar) sensing and in situ during ORACLES campaign in 2016 became publically accessible. Inversion of the data measured with lidar and including the aerosol backscatter coefficients at 355, 532 and 1064 nm and extinction coefficients at 355 and 532 nm is carried out in the study. Airborne high spectral resolution lidar was used in the measurements. Specially developed regularization algorithm is applied to invert the lidar data into aerosol optical and microphysical parameters. In frame of ORACLES campaign the aerosol optical and microphysical parameters were measured in situ as well. In situ and remote (lidar) measurements were spatially and temporarily co-located. In situ results are used to validate the inversion of lidar data with regularization algorithm. Uncertainties of 25% for effective radius, number and volume concentrations, 0.05 and 0.005 for real and imaginary parts of complex refractive index respectively and 0.05 for single scattering albedo are validated with reliability 90%.

[1] Mishchenko M.I., Cairns B., Kopp G., Schueler C.F., Fafaul B.A., Hansen J.E., Hooker R.J., Itchkawich T., Maring H.B., Travis L.D. Accurate Monitoring of Terrestrial Aerosols and Total Solar Irradiance. Introducing the Glory Mission. American Meteorological Society Publ., May 2007, pp. 677–691.
[2] Müller D., Hostetler C.A., Ferrare R.A., Burton S.P., Chemyakin E., Kolgotin A., Hair J.W., Cook A.L., D. Harper B., Rogers R.R., Hare R.W., Cleckner C.S., Obland M.D., Tomlinson J., Berg L.K., Schmid B. Atmospheric Measurement Techniques, 2014, vol. 7, pp. 3487–3496.
[3] Bohren F.B., Huffman D.R. Absorption and scattering of light by small particles. New York, John Wiley Publ., 1983, 496 р.
[4] Tikhonov A.N., Arsenin V.Y. Solution of Ill-Posed Problems. New York, John Wiley Publ., 1977, 224 p.
[5] Twomey S. Introduction to the Mathematics of Inversion in Remote Sensing and Direct Measurements. New York, Elsevier Publ., 1977, 243 р.
[6] Müller D., Wandinger U., Ansmann A. Applied Optics, 1999, vol. 38, pp. 2346–2357.
[7] Alekhnovich V.I., Korensky M.Yu, Tumentsev S.Yu., Kolgotin A.V. Izmeritelnaya Tekhnika — Measurement Techniques, 2005, no. 10, pp. 8–14.
[8] Kolgotin A.V., Alekhnovich V.I., Korensky M.Yu., Kamsha K.N. Izmeritelnaya Tekhnika — Measurement Techniques, 2005, no. 10, pp. 14–19.
[9] Kolgotin А.V. Matematicheskoe modelirovanie protsessa vosstanovleniya parametrov aerozoley po dannym mnogovolnovogolidarnogo zondirovaniya. Diss. kand. tekhn. nauk [Mathematical modeling process of aerosol parameter recovery according to the data of multiwavelength lidar sensing. Cand. Sc. in engineering diss.]. Moscow, 2003, 150 p.
[10] Kolgotin А.V. Metodika resheniya zadach mnogovolnovogo lidarnogo zondirovaniya v primenenii k globalnomu monitoringu parametrov atmosfernykh aerozoley. Diss. dokt. fiz.-mat. nauk [Methods for solving problems of multiwavelength lidar sensing in application to global monitoring atmospheric aerosol parameters. Dr. Phys.-and-Math. Sc. diss.]. St. Petersburg, 2014, 211 p.
[11] Sawamura P., Moore R.H., Burton S.P., Chemyakin E., Müller D., Kolgotin A., Ferrare R.A., Hostetler C.A., Ziemba L.D., Beyersdorf A.J., Anderson B.E. Atmospheric Chemistry and Physics, 2017, vol. 17, pp. 7229–7243.