Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Using the PIV method to design synthetic jet actuators and investigate non-steady-state jet flow

Published: 20.03.2018

Authors: Belova V.G., Makarov A.Yu., Maslov V.P., Stepanov V.A.

Published in issue: #3(75)/2018

DOI: 10.18698/2308-6033-2018-3-1737

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

We developed three designs of actuators generating synthetic jets at various frequencies, all three based on a piezoelectric diaphragm. Synthetic flows (jets featuring no mass flow rate in terms of gas) are a promising means of active flow control. Efficient use of them may reduce gas dynamic losses in transition ducts, improving aircraft power plant characteristics overall. We computed the resonance frequency and determined operation modes of said generators as regards synthetic jet formation. We used a planar method of measuring instantaneous velocity vector field, that is, PIV (Particle Image Velocimetry), for an experimental investigation of a non-steady-state velocity field when a synthetic jet flows into a flooded region, for all synthetic jet actuator design types and various vibration frequencies. We provide clear examples of synthetic jet formation for corresponding resonance frequencies of cavity vibrations in the actuator units. Using compact synthetic jet actuator units in power plant transition ducts will make it possible to decrease total pressure losses and improve engine characteristics overall.


References
[1] Luo Zh.-B., Xia Zh.-X., Xie Y.-G. Jet Vectoring Control Using a Novel Synthetic Jet Actuator. Journal of Aeronautics, 2007, vol. 20, pp. 193–201. URL: https://doi.org/10.1016/S1000-9361(07)60032-6
[2] Okada K., Oyama A., Fujii K., Miyaji K. Computational Study on Effect of Synthetic Jet Design Parameters. International J. Aerospace Engineering, 2010, vol. 2010, art. ID 364859. URL: http://dx.doi.org/10.1155/2010/364859
[3] Zhang P.F., Wang J.J., Feng L.H. Review of zero-net-mass-flux jet and its application in separation flow control. Sci. China. Ser. E. Technol. Sci., 2008, vol. 51 (9), pp. 1315–1359.
[4] Lengani D., Simoni D., Ubaldi M., Zunino P., Bertini F. Application of a synthetic jet to control boundary layer separation under ultrahigh-lift turbine pressure distribution. Flow Turbul. Combust., 2011, vol. 87 (4), pp. 597–616.
[5] Gu Y.S., Li B.B., Cheng K.M. Cross Flow Transfer Characteristics of a New Beveled Synthetic Jet Actuator and its Applications to Boundary Layer Control. Acta Aeronaut et Astronaut Sin, 2010, vol. 31 (2), pp. 231–238.
[6] Zhang J.Z., Gao S., Tan X.M. Convective Heat Transfer on a Flat Plate Subjected to Normally Synthetic Jet and Horizontally Forced Flow. Int. J. Heat Mass Transfer, 2013, vol. 57 (1), pp. 321–351.
[7] Tang X.M., Nie M.M., Zhang J.Z., Shan Y. Numerical Investigation on Enhancing Mixing by Synthetic Jets. J. Eng. Thermophys., 2011, vol. 32, pp. 299–302.
[8] Xia Q.F., Zhong S. A PLIF and PIV Study of Liquid Mixing Enhanced by a Lateral Synthetic Jet Pair. Int. J. Heat Fluid Flow, 2012, vol. 37, pp. 64–73.
[9] Glezer A. Some aspects of aerodynamic flow control using synthetic-jet actuation. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci., 1940, 2011, vol. 369, pp. 1476–1570.
[10] Xu X.P., Zhu X.P., Zhou Z., Fan R.J. Application of active flow control technique for gust load alleviation. China J. Aeronaut., 2011, vol. 24 (4), pp. 410–416.
[11] Yang D.G., Wu J.F., Luo X.F. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities. Acta Aeronaut et Astronaut Sin, 2011, vol. 32 (6), pp. 1007–1021.
[12] Lyubimov D.A. Teplofizika vysokikh temperatur — High Temperature, 2011, vol. 49, no. 4, pp. 557–567.
[13] Lyubimov D.A., Potekhina I.V. Mekhanika zhidkosti i gaza — Fluid Dynamics, 2015, no. 4, pp. 144–154.
[14] Lyubimov D.A., Soloveva A.A., Fedorenko F.E. Primenenie RANS/ILES metoda dlya issledovaniya gazodinamicheskogo upravleniya techeniem v VZ legkogo sverkhzvukovogo delovogo samoleta [Employing the RANS/ILES method to investigate gas dynamic flow control in air intakes of a light super-sonic business airplane]. Tez. dokl. 17-y Mezhdunar. shkoly-seminara Modeli i metody aerodinamiki. Evpatoriya, 4–11 iyunya 2017 g. [Proc. of the 17th International Workshop on Models and Methods in Aerodynamics. Yevpatoriya, 4–11 June, 2017]. Moscow, Zhukovsky, Zhukovskiy Central Aerohydrodynamic Institute Publ., 2017, pp. 102–103.
[15] Kashkin Yu.F., Konovalov A.E., Krasheninnikov S.Yu., Lyubimov D.A., Pudovikov D.E., Stepanov V.A. Izvestiya RAN. Mekhanika zhidkosti i gaza — Fluid Dynamics, 2009, no. 4, pp. 91–99.
[16] Lee S., Loth E., Babinsky H. Normal Shock Boundary Layer Control with Various Vortex Generator Geometries. Computers & Fluids, 2011, vol. 49, no. 1, pp. 233–246.
[17] Debiasi M., Herberg M.R., Yan Z., Dhanabalan S.S., Tsai H.M., Dhanabalan S. Control of Flow Separation in S-Ducts via Flow Injection and Suction. ARC. Aerospace Sciences Meetings. 46th AIAA Aerospace Sciences Meeting and Exhibit (Reno, Nevada, 7–10 January 2008). AIAA Paper no. 2008-74. URL: http://arc.aiaa.org/doi/10.2514/6.2008-74
[18] Florea R., Bertuccioli L., Tillman T.G. Flow-Control-Enabled Aggressive Turbine Transition Ducts and Engine System Analysis. 3rd AIAA Flow Control Conference (San Francisco, Califomia, 5–8 June 2006). Paper no. 2006-3512. URL:http://doi.org/10.2514/6-2006-3512
[19] Kim Y.H. Garry K.P. Time Dependent Analysis of a Rectangular Synthetic Jet. International Congress of the Aeronautical Sciences, 2012. URL: http://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/011.PDF
[20] Aram S., Mittal R. Computational Study of the Effect of Slot Orientation on Synthetic Jet-Based Separation Control. Int. J. of Flow Control, 2011, vol. 3 (2–3), pp. 87–110.
[21] Belova V.G., Makarov A.Yu., Maslov V.P., Stepanov V.A. Raschetno-eksperimentalnoe issledovanie generatora sinteticheskikh struy dlya upravleniya techeniem v modelnom diffuzornom kanale [Simulation and experimental investigation of a synthetic jet actuator for controlling flow in a mock-up diffuser channel]. Tez. dokl. 17-y mezhdunar. shkoly-seminara Modeli i metody aerodinamiki. Evpatoriya, 4–11 iyunya 2017 g. [Proc. of the 17th International Workshop on Models and Methods in Aerodynamics. Yevpatoriya, 4–11 June, 2017]. Moscow, Zhukovsky, Zhukovskiy Central Aerohydrodynamic Institute Publ., 2017, pp. 20–21.
[22] Duncan A., Peter W. Modeling and Design of Microjet Actuators. AIAA Journal, 2004, vol. 42 (2), pp. 220–227. URL: https://doi.org/10.2514/1.9091
[23] Holman R., Utturkar Y., Mittal R., Smith B.L., Cattafesta L. Formation Criterion for Synthetic Jets. AIAA Journal, 2005, vol. 43 (10), pp. 2110–2116. URL: https://doi.org/10.2514/1.12033
[24] Makarov A.Yu., Maslov V.P., Stepanov V.A. Experimental study of unsteady mechanisms of energy supply for the control of secondary flows in the aircraft engines ducts. International Council of the Aeronautical Sciences (ICAS-2014), ID 2014_0280, St. Petersburg, 2014, p. 4. URL: http://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0280_paper.pdf