Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Static sensitivity of the thrust-impulse characteristics of an aerospaceplane ramjet engine

Published: 10.06.2020

Authors: Svyatushenko V.V., Yagodnikov D.A.

Published in issue: #6(102)/2020

DOI: 10.18698/2308-6033-2020-6-1988

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The paper considers the effect of various perturbations on the values of thrust-impulse characteristics of an aerospaceplane ramjet operating on a cryogenic hydrocarbon fuel. An engineering method has been developed to determine variations in the output characteristics of the engine depending on the trajectory and working process parameters, the properties of the fuel. A summary table of the influence coefficients is presented. These coefficients determine the value and sign of thrust and specific impulse caused by certain perturbations. The calculations showed that the excess oxidant ratio has the greatest effect on the ramjet thrust-impulse response, which allows performing deep control of the workflow by changing the ratio of oxidant and fuel in the engine combustion chamber. High sensitivity of the output characteristics to a change in the trajectory parameters is indicated. Recommendations on the selecting characteristics of the crui-sing flight and increasing the range of workflow controlling are offered.


References
[1] Kurziner R.I. Reaktivnye dvigateli dlya bolshikh sverkhzvukovykh skorostey polyeta [Jet engines for high supersonic flight speeds]. Moscow, Mashinostroenie Publ., 1989, 263 p.
[2] Sorokin V.A., ed. Proyektirovaniye i otrabotka raketno-pryamotochnykh dvigateley na tverdom toplive [Design and development of solid propellant rocket engines]. Moscow, BMSTU Publ., 2017, 317 p.
[3] Baidya R., Pesyridis A., Cooper M. Applies Sciences, 2018, no. 8 (574), pp. 1‒24. DOI: 10.3390/app8040574
[4] Alkaya C., Alex Sam A., Pesyridis A. Aerospace, 2018, no. 5 (91), pp. 1‒27. DOI: 10.3390/aerospace5030091
[5] Curran E.T., Murthy S.N.B. High-Speed Flight Systems, 1991, vol. 137, pp. 21‒100. DOI: 10.2514/5.9781600866104.0021.0100
[6] Curran E.T., Murthy S.N.B. High-Speed Flight Systems, 1991, vol. 137, pp. 143‒235.
[7] Karasev V.N. Trudy MAI — Transactions of Moscow Aviation Institute, 2013, no. 64, pp. 1‒9. Available at: http://trudymai.ru/upload/iblock/be4/rus.pdf?lang=ru&issue=64 (accessed January 18, 2020).
[8] Semenov V.L., Galankin E.M., Serebryakov D.I. Dvigatelnaya ustanovka dlya giperzvukovogo letatelnogo apparata [Propulsion system of hypersonic aircraft]. Patent RF no. 2287076, 2006, 4 p.
[9] Cherkez A.E. Inzhenernyye raschety gazoturbinnykh dvigateley metodom malykh otkloneniy [Engineering calculations of gas turbine engines using the small-deflection theory]. Moscow, Mashinostroenie Publ., 1975, 354 p.
[10] Volkov Ye.B., Syritsin T.A., Mazing G.Yu. Statika i dinamika raketnykh dvigatelnykh ustanovok [Statics and dynamics of rocket propulsion systems]. Moscow, Mashinostroenie Publ., 1978, 320 p.
[11] Shigabiyev T.N., Yanovsky L.S., Galimov V.F., Ivanov V.F. Endotermicheskie topliva i rabochiye tela silovykh i energeticheskikh ustanovok [Endothermic fuels and working bodies of power plants]. Kazan, Kazanskiy Gosudarstvennyy Tekhnicheskiy Universitet Publ., 1996, 264 p.
[12] Yoon E.M., Selvaraj L., Song C., Stallman J.B., Coleman M.M. Energy and Fuels, 1996, vol. 10, pp. 806‒811. DOI: 10.1021/ef9502281
[13] Maurice L.Q., Corporan E., Minus D., Mantz R., Edwards T., Wohlwend K., Harrison W.E., Striebich R.C., Sidhu S., Graham J., Hitch B., Wickham D., Karpuk M. Smart Fuels: ‘Controlled’ Chemically Reacting. Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference, 1999, AIAA Publ., 1999, pp. 1‒11. DOI: 10.2514/6.1999-4916
[14] Lewis M.J. Journal of Propulsion and Power, 2001, vol. 17, no. 6, pp. 1214‒1221. DOI: 10.2514/2.5866
[15] Michail R., Kirloganu K. Reaktory v khimicheskoy promyshlennosti [Reactors in the chemical industry]. Leningrad, Khimiya Publ, 1968, 388 p.
[16] Tilicheev M.D. Khimiya krekinga [Chemistry of Cracking]. Moscow, Gostoptekhizdat Publ., 1941, 269 p.
[17] Buekens A.G., Fronment G.F. Industrial and Engineering Chemistry Process Design and Development, 1968, no. 7 (3), pp. 435‒447. DOI: 10.1021/i260027a022
[18] Zhang N., Qui T., Bingzhen C. Fluid Dynamic and Transport Phenomena. Chinese Journal of Chemical Engineering, 2013, no. 21 (12), pp. 1319‒1331. DOI: 10.1016/s1004-9541(13)
[19] Yang Q., Chang J., Bao W. Energy, 2014, vol. 76 (1), pp. 552‒558. DOI: 10.1016/j.energy.2014.08.052
[20] Trusov B.G. Programmnaya sistema TERRA dlia modelirovaniya fazovykh i khimicheskikh ravnovesiy pri vysokikh temperaturakh [TERRA software for the simulation of phase and chemical equilibria at high temperatures]. Materialy 3-go Mezhdunarodnogo simpoziuma “Gorenie i plazmokhimiia” [Burning and plasma chemistry. Proceedings of the III International Symposium]. Almaty, KNU publ., 2005, pp. 52–57.