Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Simulation of stress-strain state of defected composite shells

Published: 17.10.2016

Authors: Zakharova Yu.V., Lokhmatova L.G.

Published in issue: #11(59)/2016

DOI: 10.18698/2308-6033-2016-11-1552

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

The paper examines an important problem of modeling the stress-strain state of the defected composite shells. The issue is a promising one because presently shells made of composite materials often serve as elements of different bearing constructions and it is often impossible to avoid defects even at the manufacturing stage. We propose a mathematical model of deformation of defected cylindrical shells made of composite materials. The model is based on Timoshenko hypothesis. We examined defects of disbond type and with the help of this model we described an algorithm for solving the problem of stress-strain state of defected cylindrical shells. For the numerical solution of the problem we used the finite element method. The presented results of numerical simulations have established patterns of influence of local imperfections in the structure on the stress-strain state of cylindrical shell made of composite materials with defects such as disbonds.

[1] Choudhry R.S., Hassan Syed F., Li S., Day R. Damage in single lap joints of woven fabric reinforced polymeric composites subjected to transverse impact loading. International Journal of Impact Engineering, 2015, vol. 80, pp. 76-93.
[2] Dimitrienko Yu.I., Sokolov A.P., Shpakova Yu.V., Yurin Yu.V. Nauka i obrazovanie - Science and Education, 2012, no. 11. DOI: 10.7463/1112.0496336 (accessed July 5, 2016).
[3] Guz A.N., Grigorenko Ya.M., Babich I.Yu. et al. Mekhanika kompozitnykh materialov i elementov konstruktsiy. V 3 tomakh. Tom 2. Mekhanika elementov konstruktsii [Mechanics of Composite Materials and structural elements. In 3 vols. Vol. 2. Mechanics of structural elements]. Kiev, Naukova dumka Publ., 1983, 464 p.
[4] Dimitrienko Yu.I., Minin V.V., Syzdykov E.K. Mekhanika kompozitsionnykh materialov i konstruktsiy - Mechanics of composite materials and structures, 2011, vol. 17, no. 1, pp.71-90.
[5] Kaledin V.O., Aulchenko S.M., Mitkevich A.B., Reshetnikova E.V., Sedova E.A., Shpakova Yu.V. Modelirovanie statiki i dinamiki obolochechnykh konstruktsii iz kompozitnykh materialov [Simulation of statics and dynamics of shell structures made of composite materials]. Moscow, Fizmatlit Publ., 2014, 196 p.
[6] Aulchenko S.M., Kaledin V.O., Shpakova Yu.V. Characteristic features of the oscillation of shells of bodies of revolution immersed in a viscous fluid flow. Journal of Engineering Physics and Thermophysics, 2008, vol. 81, iss. 5, pp. 941-944.
[7] Laptev N.I., Mordasov V.I., Poilov V.V., Shulepova O.V. Laser vibrodiagnostics of starved spots of large-sized multilayered honeycomb shells. Polymer Science. Series D, 2010, vol. 3, no. 4, pp. 263-266.
[8] Cawley P. Low frequency NDT techniques for the detection of disbonds and delaminations. NDT & E International, 1992, vol. 25, no. 2, pp. 100. DOI: 10.1016/0963-8695(92)90556-V (accessed July 5, 2016).
[9] Ouinas D., Bouiadjra B. Bachir, Achour T., Benderdouche N. Influence of dis-bond on notch crack behaviour in single bonded lap joints. Materials & Design, 2010, vol. 31, no. 9, pp. 4356-4362.
[10] Kaledin V.O., Anikina Yu.V. Vestnik Tomskogo gosudarstvennogo universiteta - Tomsk State University Journal, 2006, no. 19, pp. 225-232.
[11] Agapov V.P. Metod konechnykh elementov v statike, dinamike i ustoychivosti prostranstvennykh tonkostennykh podkreplennykh konstruktsiy [The finite element method in statics, dynamics and spatial stability of thin-walled reinforced constructions]. Moscow, AsV Publ., 2000, 152 p.
[12] Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F. Metod konechnyih elementov v statike i dinamike tonkostennyih konstruktsiy [The finite element method in statics and dynamics of thin-walled structures]. Moscow, Fizmatlit Publ., 2006, 392 p.
[13] Zenkevich A. Metod konechnykh elementov v tekhnike [Finite element method in technology]. Moscow, Mir Publ., 1975, 541 p.
[14] Rickards R.B. Metod konechnykh elementov v teorii obolochek i plastin [Finite element method in the theory of shells and plates]. Riga, 1988, 284 p.
[15] Segerlind L.J. Applied Finite Element Analysis. Wiley, New York, 1976. [In Russ.: Segerlind L. Primenenie metoda konechnykh elementov. Moscow, Mir Publ., 1979, 392 p.].
[16] Kaledin V.O., Anikina Yu.V., Burnysheva T.V., Reshetnikova E.V. Vestnik Tomskogo gosudarstvennogo universiteta - Tomsk State University Journal, 2006, no. 19, pp. 233.
[17] Timoshenko S.P., Woinowskiy-Krieger S., Snitko I.K., eds. Plastinki i obolochki [Theory of plates and shells]. Moscow, Nauka Publ., 1966, 636 p.
[18] Dimitrienko Yu.I. Mehanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy mehanik i tverdyh sred [Continuum Mechanics. In 4 vol. Vol. 4. Fundamentals of mechanics of solid media]. Moscow, BMSTU Publ., 2013, 624 p.
[19] Kuzmin M.A., Lebedev D.L., Popov B.G. Raschety na prochnost elementov mnogosloinykh kompozitnykh konstruktsiy [Strength calculations of elements of multilayer composite structures]. Мoscow, BMSTU Publ., 2012, 341 p.
[20] Alfutov N.A., Zinoviev P.A., Popov B.G. Raschet mnogosloinykh konstruktsiy i obolochek iz kompozitsionnykh materialov [Calculation of multilayer structures and shells made of composite materials]. Moscow, Mashinostroenie Publ., 1984, 264 p.
[21] Popov B.G. Raschet mnogosloinykh konstruktsiy variatsionno-matrichnymi metodami [Calculation of multilayer structures by variation-matrix methods]. Moscow, BMSTU Publ., 1993, 294 p.
[22] Birger I.A., Panovko Ya.G. Prochnost, ustoichivost, kolebaniya [Strength, Stability, Vibrations]. Handbook in 3 vol. Vol. 2. Moscow, Mashinostroenie Publ., 1968, 464 p.
[23] Dimitrienko Yu.I., Shpakova Yu.V., Bogdanov I.O., Sborshikov S.V. Inzhenernyi zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2015, iss. 12 (48). Available at:
[24] Dimitrienko Yu.I., Dimitrienko I.D., Sborschikov S.V. Multiscale Hierarchical Modeling of Fiber Reinforced Composites by Asymptotic Homogenization Method. Applied Mathematical Sciences, 2015, vol. 9, no. 145, 7211-7220. Available at:
[25] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A., Stroganov A.S. Matematicheskoe modelirovanie i chislennye metody - Маthematical Modeling and Computational Methods, 2014, no. 3 (3), pp. 3-24.