Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Simulation of the fire thermal field effect on the explosive charges in a laboratory experiment

Published: 14.01.2019

Authors: Andreev S.G., Ladov S.V., Fedorov S.V.

Published in issue: #1(85)/2019

DOI: 10.18698/2308-6033-2019-1-1837

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The article considers a possibility of modeling the initial stage of ignition and decomposition of the charge of an explosive or an explosive composition with different structural insulation when exposed to the thermal field of fire. Approximate modeling on small-sized models was used, associated with using in experiments a fragment of a natural object, where the course of thermal processes coincides with the initial stage of reaction development, determining the undesirable (dangerous) final outcome of external influence. In this case, an external impact on a fragment of a bursting explosive can be characterized by a non-stationary temperature field in an environment having thermal characteristics of explosive compositions, but not possessing chemical activity. A method is proposed for determining the temperature and ignition delay time on small-sized models in laboratory conditions using thermoelectric converters (thermocouples) placed in a bulk of explosive material for measuring temperatures. A laboratory setup has been developed, which allows using a special heat generator to regulate the heat flux (fire field) to the model charge and achieve the required law of temperature variation at the lower end of the charge. An example of the fire and explosion safety estimation is given for samples of explosive mixtures based on TNT and RDX with the aluminum and deterrent additions placed in metal shells with and without an air gap

[1] Babkin A.V., Veldanov V.A., Imkhovik N.A., Kobylkin I.F., Kolpakov V.I., Ladov S.V., et al. Boepripasy. V 2 tomakh. Selivanov V.V., ed. Tom 1 [Ammunition. In 2 vols. Vol. 1]. Moscow, BMSTU Publ., 2016, 506 p.
[2] Babkin A.V., Veldanov V.A., Imkhovik N.A., Kobylkin I.F., Kolpakov V.I., Ladov S.V., et al. Boepripasy. V 2 tomakh. Selivanov V.V., ed. Tom 2 [Ammunition. In 2 vols. Vol. 2]. Moscow, BMSTU Publ., 2016, 551 p.
[3] Odintsov V.A., Ladov S.V., Levin D.P. Oruzhie i sistemy vooruzheniya [Weapons and weapons systems]. Moscow, BMSTU Publ., 2016, 219 p.
[4] Ladov S.V., Kobylkin I.F. Ispolzovanie kumulyativnykh zaryadov vo vzryvnykh tekhnologiyakh [The use of shaped charges in explosive technologies]. Moscow, BMSTU Publ., 1995, 47 p.
[5] Radzievsky S.N., Khnychkin V.M. Pozharovzryvobezopasnost i protivopozharnaya zashchita korabley [Fire explosion safety and fire protection of ships]. Leningrad, Sudostroenie Publ., 1987, 200 p.
[6] Karmolin A.L., Chernugov A.D., Korshunov Yu.V. Bezopasnaya perevozka vzryvchatykh veshchestv zheleznodorozhnym transportom [Safe transportation of explosives by rail]. Moscow, Transport Publ., 1992, 383 p.
[7] Gelfand B.E., Silnikov M.V. Vzryvobezopasnost [Explosion safety]. Artamonov V.S., ed. St. Petersburg, Asterion Publ., 2006, 392 p.
[8] Aleksashenko A.A., Koshmarov Yu.A., Molchadsky I.S. Teplomassoperenos pri pozhare [Heat and mass transfer in case of fire]. Moscow, Stroyizdat Publ., 1982, 175 p.
[9] Yudaev B.N. Teploperedacha [Heat transfer]. Moscow, Vysshaya shkola Publ., 1981, 319 p.
[10] Avduevsky V.S., Koshkin V.K., eds. Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheskoy tekhnike [Fundamentals of heat transfer in aviation and rocket and space technology]. Moscow, Mashinostroenie Publ., 1992, 528 p.
[11] Andreev S.G., Ladov S.V., Fedorov S.V. Oboronnaya tekhnika — Defence Technology, 1996, no. 8–9, pp. 13–19.
[12] Andreev S.G., Prudensky G.A. Issledovanie povedeniya zaryadov vzryvchatykh veshchestv pri teplovykh vozdeystviyakh [Study of the explosive charge behavior under heat effects]. Moscow, BMSTU Publ., 1999, 27 p.
[13] Merzhanov A.G., ed. Teplomassoobmen v protsesse goreniya [Heat and mass transfer in combustion processes]. Chernogolovka, Otdelenie Instituta khimicheskoy fiziki AN SSSR Publ., 1980, 152 p.
[14] Merzhanov A.G., Averson A.E. Sovremennoe sostoyanie teplovoy teorii zazhiganiya [The current state of thermal ignition theory]. Moscow, Institut khimicheskoy fiziki AN SSSR Publ., 1970, 64 p.
[15] Shvetsov G.A., Matrosov A.D., Fedorov S.V., Babkin A.V., Ladov S.V. Effect of external magnetic fields on shaped-charge operation. International Journal of Impact Engineering, 2011, vol. 38, iss. 6, pp. 521–526.
[16] Denisaev A.A., Dubovik A.V., Avdeev E.V., Gushchin P.V. Vzryvchatye materialy i pirotekhnika (Explosives and pyrotechnics), 1992, issue 3 (218), pp. 35–40.