Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Using time-linear Cauchy—Helmholtz formulas in the derivations of the continuity equation of Euler, Ostrogradsky, Zhukovsky

Published: 11.05.2020

Authors: Ovsyannikov V.M.

Published in issue: #5(101)/2020

DOI: 10.18698/2308-6033-2020-5-1978

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The paper indicates the reason for the appearance of the second and third order terms of smallness of the continuity equation, which in the wave dynamics lead to the appearance of spontaneous self-oscillations. The compatibility of periodic local non-conservation of the amount of substance in the control shape with the integral law of conservation of the total amount of substance in the flow region is demonstrated. It is shown that taking into account terms of the second and third order of smallness is equivalent to the order increase of time differentiality of the continuity equation, which gives an extension of the class of fluid flow movements. Attention is drawn to the similarity of constructions of inhomogeneous terms of the wave equation arising due to the convective terms of the L.D. Landau and E.M. Lifshitz equation of motion and due to the second-order smallness terms of the Euler continuity equation. It is also shown that the loss of members of second and third order of smallness in time in the derivation of the M.V. Ostrogradsky continuity equation occurs due to the neglect of the flow of fluid particles crossing twice the border of the convex control shape along the secant line, coming outside within the finite time interval and not included in the substance balance. The possibility and validity of the appearance of terms of high-order smallness in other physical laws containing the divergence operator is indicated.


References
[1] Euler L. Principia motus fluidorum. Lecture in the Berlin Academy of Sciences in 1752 [In Russ.: Euler L. Printsipy dvizheniya zhidkostey. Moscow, Sputnik+ Publ., 2019, 178 p.].
[2] Landau L.D., Lifshits E.M. Gidrodinamika [Fluid dynamics]. Moscow, Fismatlit Publ., 2001, 736 p.
[3] Ovsyannikov V.M. Vvedeniye v aksiomaticheskuyu mekhaniku zhidkosti, osnovannuyu na bazisnykh eksperimentakh s zhidkostyu [Introduction to the axiomatic fluid mechanics based on basic experiments with liquids]. In: Problemy aksiomatiki v gidrogazodinamike [Axiomatical Problems in Hydro-Gasdynamics]. Moscow, Edel-M Publ., 2006, no. 14, pp. 23–61.
[4] Euler L. Principes généraux de l’état d’équilibre des fluides. «Мémoires Acad. sc. Berlin», 1755 [In Russ.: Euler L. Izvestia RAN, Mekhanika Zhidkosti i Gaza — Fluid Dynamics, 1999, no. 6, pp. 26–54].
[5] Ovsyannikov V.M. Uravneniye nerazryvnosti Eylera 1752 g. s chlenami vysokogo poryadka malosti, dayushchimi generatsiyu voln i avtokolebaniy [Euler’s continuity equation of 1752 with members of a high order of smallness giving wave and self-oscillation generation]. XII Vserossiyskiy syezd po fundamentalnym problemam teoreticheskoy i prikladnoy mekhaniki: sbornik trudov [Proceedings of XII All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics]. In 4 volumes. Vol. 2. Ufa, Bashkirskiy gosudarstvennyy universitet Publ., 2019, pp. 652–653. DOI: 10.22226/2410-3535-2019-congress-v2
[6] Ovsyannikov V.M. Vibrator Landau—Lifshitsa, generiruyushchiy kolebaniya vo vrashchayushchikhsya techeniyakh gaza i zhidkosti [Landau—Lifshitz vibrator, generating oscillations in the rotating flows of gas and liquid]. Tezisy dokladov XIX Vserossiyskoy shkoly-seminara “Sovremennyye problemy aerodinamiki” [XIX All-Russian School-Seminar “Current Problems of Aerodynamics”. Abstracts]. Moscow, MSU Publ., 2019, p. 83.
[7] Ovsyannikov V.M. Volnoobrazovaniye i konechno-raznostnoe uravnenie nerazryvnosti Leonarda Eylera [Wave formation and the finite-difference continuity equation of Leonard Euler]. Moscow, Sputnik+ Publ., 2017, 487 p.
[8] Koppel T.A., Liyv U.R. Izvestia RAN, Mekhanika Zhidkosti i Gaza — Fluid Dynamics, 1977, no. 6, pp. 79–85.
[9] Ovsyannikov V.M. Lokalnoe differentsialnoe nesokhranenie pri integralnom sokhranenii v gazovoy dinamike [Local differential non-conservation under integral conservation in gas dynamics]. Moscow, Sputnik+ Publ., 2017, 273 p.
[10] Elizarova T.G. Kvazigazodinamicheskiye uravneniya i metody rascheta vyazkikh techeniy [Quasi-gasdynamic equations and methods for calculating viscous flows]. Moscow, Nauchnyy mir Publ., 2007, 352 p.
[11] Sheretov Yu.V. Matematicheskiye modeli gidrodinamiki [Mathematical models of hydrodynamics]. Tver, Tverskoy gosudarstvennyy universitet Publ., 2004, 80 p.
[12] Sheretov Yu.V. Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii [Dynamics of continuous media in spatio-temporal averaging]. Moscow, Regulyarnaya i khaoticheskaya dinamika Publ., 2009, 400 p.
[13] Sheretov Yu.V. Regulyarizovannye uravneniya gidrodinamiki [The regularized equations of hydrodynamics]. Tver, Tverskoy gosudarstvennyy universitet Publ., 2016, 222 p.
[14] Elizarova T.G., Zlotnik A.A., Shilnikov E.V. Zhurnal vychislitelnoy matematiki i matematicheskoi fiziki — Computational Mathematics and Mathematical Physics, 2019, vol. 59, no. 11, pp. 1899–1914.
[15] Elizarova T.G., Ivanov A.V. Computational Mathematics and Mathematical Physics, 2018, vol. 58, no. 5, pp. 714–734.
[16] Ovsyannikov V.M. Zhurnal vychislitelnoy matematiki i matematicheskoi fiziki — Computational Mathematics and Mathematical Physics, 2017, no. 5, pp. 876–880. DOI: 10.1134/S0965542517050098