Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Current effect parameters influence on radial dispersion of the metallic shaped-charge jets

Published: 30.10.2023

Authors: Fedorov S.V., Bolotina I.A., Gorelov V.I.

Published in issue: #10(142)/2023

DOI: 10.18698/2308-6033-2023-10-2308

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

To reduce penetration effect of a shaped charge, powerful current effect on the shaped charge jet could be introduced. Based on numerical simulation within the framework of a model of the uniformly elongating cylindrical rod, the paper analyzes features of the metal shaped-charge jets stretching, when passing a powerful electric current pulse through them. Main attention is paid to the effect of jet material radial dispersion behind its exit from the interelectrode gap. The role of magnetic energy stored in the jet elements during exposure was clarified in this phenomenon. For the shaped-charge jet middle sections formed by charges with diameter of 50 to 150 mm, distributions along the jet radius of the material density and the material radial velocity were obtained immediately after the current “cutoff”. They indicated that as a result of current exposure, the jet material surface layer could be torn off and dissipated with maintaining continuity of its central part. With an increase in strength of the current passed through the jet, thickness of its destroyed layer acquiring radial velocity directed from the axis and increases. Critical currents corresponding to the jet surface layer breakdown and its complete destruction were determined.


References
[1] Orlenko L.P., ed. Fizika vzryva [Physics of explosion]. In 2 volumes. Vol. 2. Moscow, Fizmatlit Publ., 2004, 656 p.
[2] Walters W.P., Zukas J.A. Fundamentals of Shaped Charges. New York, Wiley, 1989, 398 p.
[3] Fedorov S.V., Babkin A.V., Ladov S.V. Osobennosti inertsionnogo udlinneniya vysokogradientnogo provodyaschego sterzhnya v prodolnom nizkochastotnom magnitnom pole [Features of inertial elongation of a high-gradient conductive rod in the longitudinal low-frequency magnetic field]. Inzhenerno-fizicheskiy zhurnal — Journal of Engineering Physics and Thermophysics, 2001, vol. 74, no. 2, pp. 79–86.
[4] Ma B., Huang Z., Guan Z., Zu X., Jia X., Xiao Q. Research of the axial strong magnetic field applied at the initial period of inertial stretching stage of the shaped charge jet. International Journal of Impact Engineering, 2018, vol. 113, pp. 54–60.
[5] Fedorov S.V. Usilenie magnitnogo polya v metallicheskikh kumulyativnykh struyakh pri ikh inertsionnom udlinenii [Magnetic-field amplification in metal shaped-charge jets during their inertial elongation]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2005, vol. 41, no. 1, pp. 120–128.
[6] Pavlovsky A.I., Plyashkevich L.N., Shuvalov A.M., Brodsky A.Ya. Eksperimentalnye issledovaniya razrusheniya kumulyativnoy strui impulsnom toka [Experimental researches of the destruction of the shaped-charge jet by pulsed electric current]. Zhurnal tekhnicheskoy fiziki — Technical Physics, 1994, vol. 64, no. 2, pp. 76–82.
[7] Fedorov S.V., Babkin A.V., Ladov S.V. Proyavlenie magnitokumulyativnogo effekta pri vzryve kumylyativnogo zaryada s sozdannym v ego oblitsovke aksialnym magnitnym polem [Manifestation of the magnetocumulative effect during the explosion of a shaped charge with the axial magnetic field created in its lining]. Zhurnal tekhnicheskoy fiziki — Technical Physics, 2003, vol. 73, no. 8, pp. 111–117.
[8] Matrosov A.D., Shvetsov G.A. Eksperimentalnoe issledovanie tokovoy neustoychivosti kumulyativnykh struy [Experimental research of the current instability of shaped-charge jets]. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1996, vol. 37, no. 4, pp. 9–14.
[9] Pavlovsky A.I., Plyashkevich L.N., Shuvalov A.M., Brodsky A.Ya. Issledovanie nekotorykh osobennostey protsessa razrusheniya kumulyativnoy strui v silnotochnom rezhime [Research on some features of the shaped-charge jet disruption process in a strong-flow mode]. Zhurnal tekhnicheskoy fiziki — Technical Physics, 1994, vol. 64, no. 5, pp. 43–48.
[10] Plyashkevich L.N., Shuvalov A.M., Spirov G.M., Brodsky A.Ya., Dimant E.M., Lukyanov N.B., Makaev B.S., Repyev A.G., Gaidash S.V., Zaitsev A.S. Razrushenie kumulyativnykh struy tokom [Disruption of shaped-charge jets by a current]. Fizika goreniya i vzryva — Combustion, Explosion and Shock Waves, 2002, vol. 38, no. 5, pp. 124–127.
[11] Grigoryan V.A., ed. Zashchita tankov [Protection for tanks]. Moscow, BMSTU Publ., 2007, 327 p.
[12] Ogorkiewicz R.M. Future tank armors revealed. Janes Int. Defense Review, 1997, no. 5, pp. 50–51.
[13] Babkin A.V., Ladov S.V., Fedorov S.V. Elektricheskaya zaschita perspektivnoy boevoy mashiny XXI veka [Electrical protection of advanced technology combat vehicle of the XXI century]. Oboronnaya tekhnika, 2000, no. 1-2, pp. 19–25.
[14] Xiang H.-J., Liang C.-Y., Yuan X.-C. Parameters optimization of passive electromagnetic armor based on orthogonal experiment. Advances in Engineering Research, 2019, vol. 185, pp. 51–57.
[15] Burtsev V.A., Kalinin N.V., Luchinsky A.V. Elektricheskiy vzryv provodnikov i ego primenenie v elektrofizicheskikh ustanovkakh [Electrical explosion of conductors and its application in the electrical installations]. Moscow, Energoatomizdat Publ., 1990, 288 p.
[16] Walters W.P., Summers R.L. A review of jet breakup time models. Propellants, Explosives, Pyrotechnics, 1993, vol. 18, no. 5, pp. 241–246.
[17] Petit J. Breakup of copper shaped-charge jets: experiment, numerical simulations, and analytical modeling. Journal of Applied Physics, 2005, vol. 98, no. 12, 123521.
[18] Littlefield D.L., Powell J.D. The effect of electromagnetic fields on the stability of a uniformly elongating plastic jet. Physics of Fluids A, 1990, vol. 2, no. 12, pp. 2240–2248.
[19] Littlefield D.L. Finite conductivity effects on the MHD instabilities in uniformly elongating plastic jets. Physics of Fluids A, 1991, vol. 3, no. 6, pp. 1666–1673.
[20] Fedorov S.V., Babkin A.V., Ladov S.V. Razvitie magnitogidrodinamicheskoy neustoychivosti na podvergayuscheysya elektrodinamicheskomu vozdeystviya kumulyativnoy strye [Formation of magnetohydrodynamic instability of the shaped-charge jet exposing electrodynamic impact]. Oboronnaya tekhnika, 1998, no. 1–2, pp. 49–56.
[21] Shvetsov G.A., Matrosov A.D., Babkin A.V., Ladov S.V., Fedorov S.V. Povedenie metallicheskikh kumulyativnykh struy pri propuskanii po nim impulsnogo elektricheskogo toka [Behavior of metallic shaped-charge jets with passage of a pulsed electric current through them]. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 3, pp. 19–25.
[22] Pollock C.E. Electromagnetic effect of the natural hydrodynamic instability of stretching, high velocity, metallic jets. In: Megagauss Magnetic Field Generation and Pulsed Power Applications. M. Cowan and R.B. Spielman, eds. N.Y., Nova Sci. Publ., 1994, pp. 309–316.
[23] Babkin A.V., Kruzhkov V.A., Lugovoy E.V, Fedorov S.V. Matematicheskoe modelirovanie rastyazheniya kumulyativnoy strui pri propuskanii cherez nee elektricheskogo toka [Mathematical simulation of stretching of the shaped-charge jet when electric current is passing through it]. Oboronnaya tehnika, 1993, no. 9, pp. 36–39.
[24] Fedorov S.V. Ob effekte rasseivaniya kumulyativnykh struy pri propuskanii po nim moschnogi impulsa elektricheskogo toka [On the dispersion effect of metallic shaped-charge jets when a powerful pulse of electric current is passing through them]. Zhurnal tekhnicheskoy fiziki — Technical Physics, 2012, vol. 82, no. 10, pp. 18–30.
[25] Appelgren P., Skoglund M., Lundberg P., Westerling L., Larsson A., Hurtig T. Experimental study of electromagnetic effects on solid copper jets. Journal of Applied Mechanics. Transactions ASME, 2010, vol. 77, no. 1, pp. 1–7.
[26] Babkin A.V., Kolychev M.E., Ladov S.V., Fedorov S.V. O vozmozhnom mekhanizme razrusheniya kumulyativnoy strui impulsnom toka [On a possible mechanism of destruction of the shaped-charge jet by current pulse]. Oboronnaya tehnika, 1995, no. 4, pp. 47–54.
[27] Zhernokletov M.V., ed. Metody issledovaniya svoystv materialov pri intensivnykh dinamicheskikh nagruzkakh [Methods for studying the properties of materials under intense dynamic loads]. Sarov, RFYaTs–VNIIEF Publ., 2005, 428 p.
[28] Fedorov S.V., Veldanov V.A., Smirnov V.E. Chislennyi analiz vliyaniya skorosti i prochnosti udlinennykh udarnikov iz vysokoplotnogo splava na glubinu ikh proniknoveniya v stalnuyu pregradu [Influence numerical analysis of velocity and strength of high density alloy elongated projectiles on their penetration depth into the steel target]. Vestnik MGTU im. N.E. Bauman — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2015, no. 1 (100), pp. 65–83.
[29] Knoepfel H. Pulsed High Magnetic Fields. Amsterdam, North-Holland Publ. Company, 1970, 373 p. [In Russ.: Knopfel’ G. Sverkhsilnye impulsnye magnitnye polya. Moscow, Mir Publ., 1972, 392 p.].
[30] Shvetsov A.G., Matrosov A.D., Stankevich S.V. Vliyanie elektricheskogo toka na glubinu proniknoveniya kumulyativnykh struy v pregrady [Effect of electric current on the depth of penetration of shaped-charge jets into targets]. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2015, vol. 56, no. 1, pp. 150–161.
[31] Ilyushin A.A. Mekhanika sploshnoy sredy [Continuum mechanics]. Moscow, MGU Publ., 1990, 310 p.
[32] Johnson G.R., Cook W.N. A constitutive model and data for metals is subject to large strains, high rates and high temperatures. In: Proc. of the 7th Int. Symp. on Ballistics. Hague, Netherlands, 1983, pp. 541–547.
[33] Veldanov V.A., Markov V.A., Pusev V.I., Ruchko A.M., Sotsky M.Yu., Sotsky Yu.M., Fedorov S.V. Issledovanie dinamicheskikh mekhanicheskikh svoystv alyuminievykh splavov metodom akselerometrii [Research of dynamic mechanical properties of aluminum alloys by an accelerometry method]. Vestnik MGTU im. N.E. Baumana. Seriya Mashinostroyenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2010, no. 2 (79), pp. 37–46.
[34] Wilkins M.L. Calculation of elastoplastic flows. In: B. Alder (Ed.) Methods in Computational Physics. Vol. 3. New York, Academic Press, 1964, pp. 211−263 [In Russ.: Uilkins M.L. Raschet uprugoplasticheskikh techeniy. Vychislitelnye metody v gidrodinamike. Moscow, Mir Publ., 1967, pp. 212–263].