Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Analysis of operation of the low-amplitude pressure pulse detonation generator with adjustable duration

Published: 30.10.2023

Authors: Andreev S.G.

Published in issue: #10(142)/2023

DOI: 10.18698/2308-6033-2023-10-2309

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The paper presents results of the analysis conducted on the action of the low-amplitude pressure pulse detonation generator with adjustable duration, where the detonation wave affects the controlled compressible medium and propagates in the direction from the medium subjected to the shock wave compression. Analytical expressions are provided for a simple model of the process under study to calculate the pressure pulse amplitude-time characteristics on the compressible medium with the charge detonation product plane-symmetric flow and the compressible inert medium. The paper considers a scheme of experimental (laboratory) assembly. In its cylindrical channel, the detonation product quasi-one-dimensional effect on the controlled environment is realized. Results of registering dynamics of pressure alterations in the controlled environment were obtained. When comparing calculation and experiment results, the reasons causing their discrepancy were identified. If the assembly body is made of steel not subjected to heat treatment, then it becomes possible to use it five times (at least) with charges of the bulk explosives based on the hexogen with generating controlled pressure pulses of several kilobars in the condensed organic materials with duration of at least tens of microseconds. In this case, the pressure rise time at the pulse leading edge reaches approximately ten microseconds.


References
[1] Andreev S.G., Boyko M.M., Selivanov V.V. Eksperimentalnye metody fiziki vzryva i udara [Experimental methods of physics of explosion and uranium]. V.V. Selivanov, ed. Moscow, Fizmatlit Publ., 2013, 752 p.
[2] Mogilev V.A., Novikov S.A., Faykov Yu.V. Tekhnika vzryvnogo eksperimenta dlya issledovaniya mekhanicheskoy stoykosti konstruktsiy. Monografiya [Explosive experiment technique for studying the mechanical resistance of structures. Monograph]. Sarov, RFYaTs–VNIIEF Publ., 2007, 215 p.
[3] Walker F.E. Initiation patterns produced in explosives by low-pressure, long-duration shock waves. Combustion and Flame, 1974, vol. 22, no. 1, pp. 53–58.
[4] Andreev S.G., Boyko M.M., Kobylkin I.F., Solovyov V.S. Obrazovanie ochagov v trotile i tetrile pri slabom udarnom vozdeystvii [Formation of foci in TNT and tetryl under the weak impact]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 1976, vol. 15, no. 6, pp. 143–148.
[5] Andreev S.G., Boyko M.M., Solovyev V.S., et al. Parametry polya techeniya v udarnykh trubakh dinamicheskogo szhatiya strukturno-neodnorodnykh kondensirovannykh veschestv [Parameters of the flow field in shock tubes of intact dynamic compression of structurally inhomogeneous condensed matter]. In: Vysokoenergeticheskoe vozdeystvie na materialy: Sbornik trudov Mezhdunarodnoy konferentsii [High-energy impact on materials: Collection of proceedings of the International Conference]. Novosibirsk, 1986, pp. 131–135.
[6] Orlenko L.P., ed. Fizika vzryva [Physics of explosion]. In 2 vols. Vol. 1. 3rd ed. Moscow, Fizmatlit Publ., 2002, 832 p. ISBN 5-9221-0219-2
[7] Solovyev V.S., Andreev S.G., Levantovsky A.V., Shamshev K.N., Tsvetkov L.P., Krasov G.A. Opticheskie i rentgenograficheskie issledovaniya nizkoplotnykh VV na osnove geksogena [Optical and radiographic study of low-density explosives based on hexogen]. In: Gorenie i vzryv: materialy Tretyego Vsesoyuznogo simpoziuma po goreniyu i vzryvu [Combustion and explosion: materials of the Third All-Union Symposium on Combustion and Explosion]. Moscow, Nauka Publ., 1972, pp. 451–454.
[8] Dremin A.N., Savrov S.D., Trofimov V.S., Shvedov K.K. Detonatsionnye volny v kondensirovannykh sredakh [Detonation waves in the condensed media]. Moscow, Nauka Publ., 1970, 164 p.
[9] Deal W.E. Low pressure points on the isentropes of several high explosives. In: Third Symp. on Detonation. James Forrestal Research Center, Princeton Univ., ONR Symp. Rept. ACR-52, vol. 2, September 26–28, 1960, pp. 386–395.
[10] Miller R. Approximate equation of state of detonation products. In: Detonation and Two-Phase Flow. By Williams F.A., Penner S.S., Academic Press, 1962 [In Russ.: Priblizhennoe uravnenie sostoyaniya produktov detonatsii kondensirovannykh vzryvchatykh veschestv. Detonatsiya i dvukhfaznoe techenie. Sbornk statey, ed. Penner S.S. and Williams F.A. Moscow, Mir Publ., 1966, pp. 68–77].
[11] Slater J.C. Introduction to Chemical Physics. McGraw-Hill, N.Y., 1939, pp. 132, 450–455.
[12] Eyring H., Ree T., Hira N. Significant Structures in the Liquid State. In: I. Proc. Nat. Acad. Sci., 1958, vol. 44, pp.683–688.
[13] Solovyev V.S., Attetkov A.V., Boyko M.M., Vlasova L.N., Kramarenko V.N., Chernov A.I.. Eksperimentalnoe issledovanie mekhanizme vozbuzhdeniya detonatsii v nizkoplotnykh VV [Experimental study of the mechanism of excitation of detonation in the low-density explosives]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 1986, vol. 4, no. 4, pp. 88–92.
[14] Ershov A.P., Rubtsov I.A. O detonatsii nizkoplotnykh vzryvchatykh veschestv [On detonation of the low-density explosives]. Fizika goreniya i vzryva — Combustion, Explosion, and Shock Waves, 2019, vol. 55, no. 1, pp. 128–135.
[15] Ermolaev B.S. Konvektivnoe gorenie i perekhod k nizkoskorstnoy detonatsii v poristykh energeticheskikh msterialakh. Dis. … d-ra fiz.-mat. nauk [Convective combustion and transition to low-speed detonation in porous energetic materials. Diss. … Dr. Sc. (Phys.-math.)]. Moscow, 2020, 310 p.
[16] Ermolaev B.S., Belyaev A.A., Sulimov A.A. Chislennoe modelirovanie perekhoda goreniya v detonatsiyu v peroksilinovykh porokhakh [Numerical simulation of transition from combustion to detonation in the pyroxylin powders]. Zhurnal “Khimicheskaya fizika” — Russian Journal of Physical Chemistry, 2004, vol. 23, no. 1, pp. 67–77.
[17] Andreev S.G. Izychenie vozmozhnosti zameny uglerodistykh datchikov davleniya Allen-Bradley kommercheskimi resistorami [Investigating feasibility of replacing Allen-Bradley carbon pressure sensors with the commercial resistors]. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie — Science and Education: Scientific Edition of the Bauman MSTU, 2012, iss. 01. Available at: http//technomag.edu.ru/doc/303217.htm (accessed January 30, 2012).
[18] Ginsberg M.J., Asay B.W. Commercial carbon composition resistor as dynamic stress gauges in difficult environments. Review of Scientific Instruments, 1991, vol. 62, no. 9, pp. 2218–2227.