Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

А.Ф. Киселев, В.В. Коваленко, Т.М. Притуло

10

Инженерный журнал: наука и инновации

# 8·2017

Sonic boom investigation: Computation and experiment

© A.F. Kiselev, V.V. Kovalenko, T.M. Pritulo

Central Aerohydrodynamic Institute (TsAGI), Zhukovsky town,

Moscow Region, 140180, Russia

The article deals with the issues related to designing supersonic aircraft. The biggest

hurdle in creating second-generation supersonic civil aircraft is the requirement for the

sonic boom amplitude to remain acceptable. The article presents results of investigating

the sonic boom phenomenon using a combined computational and experimental tech-

nique. The technique is based on measuring perturbed pressure in the near field of a

model mounted in the working part of a wind tunnel and subsequently remapping the

measurement data over large distances using the quasilinear theory. We provide results

of investigating pressure distributions in the near field of aircraft models in the TsAGI

T-113 wind tunnel. We compare experimental and numerical data and outline sugges-

tions for improving the technique.

Keywords:

supersonic civil aircraft, sonic boom, numerical techniques, mathematical

modelling, Zhilin's theorem, experimental techniques, near and far field

REFERENCES

[1]

Chirkashenko V.F., Yudintsev Yu.N. Razvitie metodiki izmereniy parametrov

zvukovogo udara v sverkhzvukovykh aerodinamicheskikh trubakh [Developing

a technique for measuring sonic boom parameters in supersonic wind tunnels].

Preprint no. 6–83, Khristianovich Institute of Theoretical and Applied

Mechanics, Siberian Branch of Russian Academy of Sciences

. Novosibirsk,

1983, рр. 1–19.

[2]

Chirkashenko V.F., Yudintsev Yu.N. Sistema izmereniy parametrov zvukovogo

udara v aerodinamicheskikh trubakh s ispolzovaniem

EVM [A system for

measuring sonic boom parameters in wind tunnels using a computer].

Preprint

no. 21–83, Khristianovich Institute of Theoretical And Applied Mechanics,

Siberian Branch of Russian Academy of Sciences.

Novosibirsk, 1983, рр. 1–27.

[3]

Rudakov A.I., Yudintsev Yu.N.

Uchenye zapiski TsAGI — TsAGI Science

Journal

, 1979, vol. Х, no. 3, pp. 27–36.

[4]

Chernyshev S.L., Ivanov A.I., Kiselev A.F., Kovalenko V.V., Mosharov V.E.,

Chirkashenko V.F., Volkov V.F., Fomin V.M., Kharitonov A.M. Sovershen-

stvovanie metodov fizicheskogo modelirovaniya yavleniya zvukovogo udara ot

sverkhzvukovogo samoleta [Refining physical simulation techniques for the

phenomenon of sonic boom generated by supersonic aircraft]. In:

Sbornik “Rezultaty

fundamentalnykh issledovaniy v prikladnykh zadachakh aviastroeniya”

[Proc. of

the Results of Theoretical Investigations in Applied Problems of Aircraft

Industry]. Moscow, Nauka Publ., 2016, pp. 41–54.

[5]

MacCormack R.W. The effect of viscosity in hypervelocity impact cratering.

The 4th Aerodynamic Testing Conference, Cincinnati, American Institute of

Aeronautics and Astronautics, 1969.

AIAA Paper 69-354

, 1969, рр. 1–6.

[6]

Moretti G. Conformal mapping for computations of steady, three-dimensional,

supersonic flows.

Numerical/Laboratory Computer Methods in Fluid

Mechanics

.

ASME

, 1976, рр. 1–11.

[7]

Kovalenko V.V., Minaylos A.N. Raschet nevyazkogo sverkhzvukovogo

techeniya okolo kombinatsii krylo — fyuzelyazh [Computing inviscid