Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Frequency offset of aircraft airframe structural elements

Published: 15.01.2021

Authors: Fedorov R.V., Serebryanskiy S.A.

Published in issue: #1(109)/2021

DOI: 10.18698/2308-6033-2021-1-2048

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The paper emphasizes the relevance of the problem of resonance in aircraft airframe structural elements, and relying on the operating experience shows the consequences of this phenomenon in terms of fatigue cracks occurring in the details of the aircraft airframe during vibration load. The types and consequences of failures in aviation equipment airframe structural elements arising from vibration load are analyzed. On the example of the slat, the forms of natural oscillations of high-lift devices are investigated, their relationship with the rotational frequencies of the high and low pressure rotors of the lift-propulsion system is shown. The study introduces the method of frequency offset of the structural pattern of the object under consideration, and implements the algorithm for modal analysis of a metal structure on the basis of modern applied packages of three-dimensional modeling and engineering analysis. The place of analytical calculations in the structure of the entire product life cycle is noted.

[1] MAK. Aviatsionnye pravila, chast 25. (AP-25). Normy letnoy godnosti samoletov transportnoy kategorii [Aviation register of IAC. Part 25. Airworthiness standards for transport category aircraft]. Mezhgos. aviats. komitet Publ., 2015, 5th ed. with amendments 1-8, 288 p.
[2] Bezuevskiy A.V. Osobennosti kharakteristik staticheskoy i dinamicheskoy aerouprugosti letatelnykh apparatov s krylom bolshogo udlineniya. Dis. … kand. tekhn. nauk [Special characteristics of static and dynamic aeroelasticity of aircraft with a high-aspect-ratio wing. Cand. eng. sc. diss.]. Zhukovskiy, 2019, 151 p.
[3] Soal K., Govers Y., Boswald M., Vollmer A. Taxi vibration testing: a new and time efficient procedure for the identification of modal parameters on aircrafts. International Forum on Aeroelasticity and Structural Dynamics. 10–13 June 2019, Savannah, USA. Available at: (accessed November 1, 2020).
[4] Aleksushin S.V. Trudy MAI — Proceedings of MAI, 2014, no. 73. Available at: (accessed November 1, 2020).
[5] Vanlanduit S., Guillaume P. Experimental modal analysis of a slat track. Proceedings of SPIE — The International Society for Optical Engineering. January 2002. Available at: (accessed November 1, 2020).
[6] Kerschen G., Peeters M., Golinval J.C., Stephan C. Nonlinear Modal Analysis of a Full-Scale Aircraft. Journal of Aircraft, 2013, vol. 50, no. 5, pp. 1409–1419. DOI: 10.2514/1.C031918
[7] Nikhamkin M.Sh., Solomonov D.G. Vestnik PNIPU. Aerokosmicheskaya tekhnika — PNRPU Aerospace Engineering Bulletin, 2017, no. 51. DOI: 10.15593/2224-9982/2017.51.12
[8] Razbegaeva I.A. Trudy MAI — Proceedings of MAI, 2011, no. 45. Available at: (accessed November 1, 2020).
[9] Xiaoping Ouyang, Huayong Yang, Feng Gao, Hongxin Wang. Modal analysis of the aircraft hydraulic-system pipeline. Journal of Aircraft, 2012, vol. 49, no. 4, pp. 1168–1174. DOI: 10.2514/1.C031660
[10] Tkach V.V. Trudy MAI — Proceedings of MAI, 2010, no. 38. Available at: (accessed November 1, 2020).
[11] Inozemtsev A.A., Nikhamkin M.A. Osnovy konstruirovaniya aviatsionnykh dvigateley i energeticheskikh ustanovok. T. 4: Dinamika i prochnost aviatsionnykh dvigateley i energeticheskikh ustanovok [Fundamentals of designing aircraft engines and power plants. Vol. 4: Dynamics and strength of aircraft engines and power plants]. Moscow, Mashinostroenie Publ., 2008, 200 p.